1,374
Views
14
CrossRef citations to date
0
Altmetric
Extra Views

APOBEC3 proteins and genomic stability

The high cost of a good defense

, &
Pages 33-38 | Received 27 Oct 2011, Accepted 08 Nov 2011, Published online: 01 Jan 2012

References

  • Hamilton CE, Papavasiliou FN, Rosenberg BR. Diverse functions for DNA and RNA editing in the immune system. RNA Biol 2010; 7:220 - 228; PMID: 20220309; http://dx.doi.org/10.4161/rna.7.2.11344
  • Conticello SG, Langlois MA, Yang Z, Neuberger MS. DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol 2007; 94:37 - 73; PMID: 17560271; http://dx.doi.org/10.1016/S0065-2776(06)94002-4
  • Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 2007; 76:1 - 22; PMID: 17328676; http://dx.doi.org/10.1146/annurev.biochem.76.061705.090740
  • Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol 2008; 26:261 - 292; PMID: 18370922; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090248
  • Chiu YL, Greene WC. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 2008; 26:317 - 353; PMID: 18304004; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090350
  • Harris RS, Liddament MT. Retroviral restriction by APOBEC proteins. Nat Rev Immunol 2004; 4:868 - 877; PMID: 15516966; http://dx.doi.org/10.1038/nri1489
  • Holmes RK, Malim MH, Bishop KN. APOBEC-mediated viral restriction: not simply editing?. Trends Biochem Sci 2007; 32:118 - 128; PMID: 17303427; http://dx.doi.org/10.1016/j.tibs.2007.01.004
  • Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, et al. DNA deamination mediates innate immunity to retroviral infection. Cell 2003; 113:803 - 809; PMID: 12809610; http://dx.doi.org/10.1016/S0092-8674(03)00423-9
  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003; 424:99 - 103; PMID: 12808466; http://dx.doi.org/10.1038/nature01709
  • Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003; 424:94 - 98; PMID: 12808465; http://dx.doi.org/10.1038/nature01707
  • Lecossier D, Bouchonnet F, Clavel F, Hance AJ. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 2003; 300:1112; PMID: 12750511; http://dx.doi.org/10.1126/science.1083338
  • Suspène R, Guétard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci USA 2005; 102:8321 - 8326; PMID: 15919829; http://dx.doi.org/10.1073/pnas.0408223102
  • Vartanian JP, Guetard D, Henry M, Wain-Hobson S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 2008; 320:230 - 233; PMID: 18403710; http://dx.doi.org/10.1126/science.1153201
  • Yang B, Chen K, Zhang C, Huang S, Zhang H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 2007; 282:11667 - 11675; PMID: 17272283; http://dx.doi.org/10.1074/jbc.M606864200
  • Kaiser SM, Emerman M. Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol 2006; 80:875 - 882; PMID: 16378989; http://dx.doi.org/10.1128/JVI.80.2.875-82.2006
  • Mbisa JL, Barr R, Thomas JA, Vandegraaff N, Dorweiler IJ, Svarovskaia ES, et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 2007; 81:7099 - 7110; PMID: 17428871; http://dx.doi.org/10.1128/JVI.00272-07
  • Schumacher AJ, Haché G, Macduff DA, Brown WL, Harris RS. The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD and human immunodeficiency virus type 1 restriction. J Virol 2008; 82:2652 - 2660; PMID: 18184715; http://dx.doi.org/10.1128/JVI.02391-07
  • Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol 2010; 17:222 - 229; PMID: 20062055; http://dx.doi.org/10.1038/nsmb.1744
  • Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I, et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 2006; 16:480 - 485; PMID: 16527742; http://dx.doi.org/10.1016/j.cub.2006.01.031
  • Suspène R, Henry M, Guillot S, Wain-Hobson S, Vartanian JP. Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. J Gen Virol 2005; 86:125 - 129; PMID: 15604439; http://dx.doi.org/10.1099/vir.0.80426-0
  • Rosenberg BR, Papavasiliou FN. Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection. Adv Immunol 2007; 94:215 - 244; PMID: 17560276; http://dx.doi.org/10.1016/S0065-2776(06)94007-3
  • Petit V, Vartanian JP, Wain-Hobson S. Powerful mutators lurking in the genome. Philos Trans Soc Lond B Biol Sci 2009; 364:705 - 715; PMID: 19042181; http://dx.doi.org/10.1098/rstb.2008.0272
  • Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 2009; 30:173 - 181; PMID: 19303358; http://dx.doi.org/10.1016/j.it.2009.01.007
  • Nagaoka H, Tran TH, Kobayashi M, Aida M, Honjo T. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int Immunol 2010; 22:227 - 235; PMID: 20207715; http://dx.doi.org/10.1093/intimm/dxq023
  • Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 2008; 451:841 - 845; PMID: 18273020; http://dx.doi.org/10.1038/nature06547
  • Staszewski O, Baker RE, Ucher AJ, Martier R, Stavnezer J, Guikema JE. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell 2011; 41:232 - 242; PMID: 21255732; http://dx.doi.org/10.1016/j.molcel.2011.01.007
  • Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 2008; 135:1130 - 1142; PMID: 19070581; http://dx.doi.org/10.1016/j.cell.2008.10.035
  • Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 2009; 36:631 - 641; PMID: 19941823; http://dx.doi.org/10.1016/j.molcel.2009.11.007
  • Hasham MG, Donghia NM, Coffey E, Maynard J, Snow KJ, Ames J, et al. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol 2010; 11:820 - 826; PMID: 20657597; http://dx.doi.org/10.1038/ni.1909
  • Wang M, Yang Z, Rada C, Neuberger MS. AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol 2009; 16:769 - 776; PMID: 19543289; http://dx.doi.org/10.1038/nsmb.1623
  • Landry S, Narvaiza I, Linfesty DC, Weitzman MD. APOBEC3A can activate the DNA damage response and cause cell cycle arrest. EMBO Rep 2011; 12:444 - 450; PMID: 21460793; http://dx.doi.org/10.1038/embor.2011.46
  • Fernandez-Capetillo O, Celeste A, Nussenzweig A. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2003; 2:426 - 427; PMID: 12963833; http://dx.doi.org/10.4161/cc.2.5.509
  • Bransteitter R, Pham P, Scharff MD, Goodman MF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 2003; 100:4102 - 4107; PMID: 12651944; http://dx.doi.org/10.1073/pnas.0730835100
  • Suspène R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, et al. APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 2004; 32:2421 - 2429; PMID: 15121899; http://dx.doi.org/10.1093/nar/gkh554
  • Yu Q, König R, Pillai S, Chiles K, Kearney M, Palmer S, et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 2004; 11:435 - 442
  • Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003; 422:726 - 730; PMID: 12692563; http://dx.doi.org/10.1038/nature01574
  • Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 2003; 4:452 - 456; PMID: 12692548; http://dx.doi.org/10.1038/ni920
  • Pham P, Bransteitter R, Petruska J, Goodman MF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 2003; 424:103 - 107; PMID: 12819663; http://dx.doi.org/10.1038/nature01760
  • Shen HM, Poirier MG, Allen MJ, North J, Lal R, Widom J, et al. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J Exp Med 2009; 206:1057 - 1071; PMID: 19380635; http://dx.doi.org/10.1084/jem.20082678
  • Khobta A, Epe B. Interactions between DNA damage, repair and transcription. Mutat Res 2011; In press
  • Suspène R, Aynaud MM, Guetard D, Henry M, Eckhoff G, Marchio A, et al. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc Natl Acad Sci USA 2011; 108:4858 - 4863; PMID: 21368204; http://dx.doi.org/10.1073/pnas.1009687108
  • Imai K, Catalan N, Plebani A, Marodi L, Sanal O, Kumaki S, et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest 2003; 112:136 - 142; PMID: 12840068
  • Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999; 274:18470 - 18476; PMID: 10373455; http://dx.doi.org/10.1074/jbc.274.26.18470
  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102:553 - 563; PMID: 11007474; http://dx.doi.org/10.1016/S0092-8674(00)00078-7
  • Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000; 102:565 - 575; PMID: 11007475; http://dx.doi.org/10.1016/S0092-8674(00)00079-9
  • Delker RK, Fugmann SD, Papavasiliou FN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 2009; 10:1147 - 1153; PMID: 19841648; http://dx.doi.org/10.1038/ni.1799
  • Crouch EE, Li Z, Takizawa M, Fichtner-Feigl S, Gourzi P, Montano C, et al. Regulation of AID expression in the immune response. J Exp Med 2007; 204:1145 - 1156; PMID: 17452520; http://dx.doi.org/10.1084/jem.20061952
  • Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008; 28:630 - 638; PMID: 18455451; http://dx.doi.org/10.1016/j.immuni.2008.04.002
  • Patenaude AM, Orthwein A, Hu Y, Campo VA, Kavli B, Buschiazzo A, et al. Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat Struct Mol Biol 2009; 16:517 - 527; PMID: 19412186; http://dx.doi.org/10.1038/nsmb.1598
  • Pasqualucci L, Kitaura Y, Gu H, Dalla-Favera R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci USA 2006; 103:395 - 400; PMID: 16387847; http://dx.doi.org/10.1073/pnas.0509969103
  • Basu U, Franklin A, Alt FW. Post-translational regulation of activation-induced cytidine deaminase. Philos Trans R Soc Lond B Biol Sci 2009; 364:667 - 673; PMID: 19010772; http://dx.doi.org/10.1098/rstb.2008.0194
  • Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S, Weill JC, et al. Proteasomal degradation restricts the nuclear lifespan of AID. J Exp Med 2008; 205:1357 - 1368; PMID: 18474627; http://dx.doi.org/10.1084/jem.20070950
  • Xu Z, Fulop Z, Wu G, Pone EJ, Zhang J, Mai T, et al. 14-3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination. Nat Struct Mol Biol 2010; 17:1124 - 1135; PMID: 20729863; http://dx.doi.org/10.1038/nsmb.1884
  • Orthwein A, Patenaude AM, Affar el B, Lamarre A, Young JC, Di Noia JM. Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90. J Exp Med 2010; 207:2751 - 2765; PMID: 21041454; http://dx.doi.org/10.1084/jem.20101321
  • Storck S, Aoufouchi S, Weill JC, Reynaud CA. AID and partners: for better and (not) for worse. Curr Opin Immunol 2011; 23:337 - 344; PMID: 21439803; http://dx.doi.org/10.1016/j.coi.2011.02.002
  • Okazaki IM, Kotani A, Honjo T. Role of AID in tumorigenesis. Adv Immunol 2007; 94:245 - 273; PMID: 17560277; http://dx.doi.org/10.1016/S0065-2776(06)94008-5
  • Marusawa H, Takai A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol 2011; 111:109 - 141; PMID: 21970953; http://dx.doi.org/10.1016/B978-0-12-385991-4.00003-9
  • Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM. Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med 2006; 203:41 - 46; PMID: 16418394; http://dx.doi.org/10.1084/jem.20051512
  • Bonvin M, Achermann F, Greeve I, Stroka D, Keogh A, Inderbitzin D, et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 2006; 43:1364 - 1374; PMID: 16729314; http://dx.doi.org/10.1002/hep.21187
  • Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages and dendritic cells. J Biol Chem 2007; 282:3539 - 3546; PMID: 17110377; http://dx.doi.org/10.1074/jbc.M610138200
  • Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 2009; 83:9474 - 9485; PMID: 19587057; http://dx.doi.org/10.1128/JVI.01089-09
  • Pauklin S, Sernandez IV, Bachmann G, Ramiro AR, Petersen-Mahrt SK. Estrogen directly activates AID transcription and function. J Exp Med 2009; 206:99 - 111; PMID: 19139166; http://dx.doi.org/10.1084/jem.20080521
  • Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 2010; 38:4274 - 4284; PMID: 20308164; http://dx.doi.org/10.1093/nar/gkq174
  • Rose KM, Marin M, Kozak SL, Kabat D. Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem 2004; 279:41744 - 41749; PMID: 15297452; http://dx.doi.org/10.1074/jbc.M406760200
  • Sarkis PT, Ying S, Xu R, Yu XF. STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-alpha. J Immunol 2006; 177:4530 - 4540; PMID: 16982890
  • Muckenfuss H, Kaiser JK, Krebil E, Battenberg M, Schwer C, Cichutek K, et al. Sp1 and Sp3 regulate basal transcription of the human APOBEC3G gene. Nucleic Acids Res 2007; 35:3784 - 3796; PMID: 17517765; http://dx.doi.org/10.1093/nar/gkm340
  • Farrow MA, Kim EY, Wolinsky SM, Sheehy AM. NFAT and IRF proteins regulate transcription of the anti-HIV gene, APOBEC3G. J Biol Chem 2011; 286:2567 - 2577; PMID: 21078663; http://dx.doi.org/10.1074/jbc.M110.154377
  • Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 2007; 81:2165 - 2178; PMID: 17166910; http://dx.doi.org/10.1128/JVI.02287-06
  • Huang J, Liang Z, Yang B, Tian H, Ma J, Zhang H. Derepression of MicroRNA-mediated Protein Translation Inhibition by Apolipoprotein B mRNA-editing Enzyme Catalytic Polypeptide-like 3G (APOBEC3G) and Its Family Members. J Biol Chem 2007; 282:33632 - 33640; PMID: 17848567; http://dx.doi.org/10.1074/jbc.M705116200
  • Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 2009; 5:1000330; PMID: 19266078; http://dx.doi.org/10.1371/journal.ppat.1000330
  • Iwatani Y, Takeuchi H, Strebel K, Levin JG. Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 2006; 80:5992 - 6002; PMID: 16731938; http://dx.doi.org/10.1128/JVI.02680-05
  • Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 2006; 281:29105 - 29119; PMID: 16887808; http://dx.doi.org/10.1074/jbc.M601901200
  • Kreisberg JF, Yonemoto W, Greene WC. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 2006; 203:865 - 870; PMID: 16606671; http://dx.doi.org/10.1084/jem.20051856
  • Shirakawa K, Takaori-Kondo A, Yokoyama M, Izumi T, Matsui M, Io K, et al. Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. Nat Struct Mol Biol 2008; 15:1184 - 1191
  • Stenglein MD, Matsuo H, Harris RS. Two regions within the amino-terminal half of APOBEC3G cooperate to determine cytoplasmic localization. J Virol 2008; 82:9591 - 9599; PMID: 18667511; http://dx.doi.org/10.1128/JVI.02471-07
  • Chiu YL, Witkowska HE, Hall SC, Santiago M, Soros VB, Esnault C, et al. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci USA 2006; 103:15588 - 15593; PMID: 17030807; http://dx.doi.org/10.1073/pnas.0604524103
  • Bennett RP, Presnyak V, Wedekind JE, Smith HC. Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J Biol Chem 2008; 283:7320 - 7327; PMID: 18165230; http://dx.doi.org/10.1074/jbc.M708567200
  • McDougall WM, Smith HC. Direct evidence that RNA inhibits APOBEC3G ssDNA cytidine deaminase activity. Biochem Biophys Res Commun 2011; 412:612 - 617; PMID: 21856286; http://dx.doi.org/10.1016/j.bbrc.2011.08.009
  • Thielen BK, Klein KC, Walker LW, Rieck M, Buckner JH, Tomblingson GW, et al. T cells contain an RNase-insensitive inhibitor of APOBEC3G deaminase activity. PLoS Pathog 2007; 3:1320 - 1334; PMID: 17892323; http://dx.doi.org/10.1371/journal.ppat.0030135
  • Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2006; 2:41; PMID: 16699599; http://dx.doi.org/10.1371/journal.ppat.0020041
  • Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O'Shea KS, Moran JV, et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 2006; 103:8780 - 8785; PMID: 16728505; http://dx.doi.org/10.1073/pnas.0603313103
  • Niewiadomska AM, Tian C, Tan L, Wang T, Sarkis PTN, Yu XF. Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with high-molecular-mass-complex formation or P-body association. J Virol 2007; 81:9577 - 9583; PMID: 17582006; http://dx.doi.org/10.1128/JVI.02800-06
  • Mehta A, Kinter MT, Sherman NE, Driscoll DM. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol 2000; 20:1846 - 1854; PMID: 10669759; http://dx.doi.org/10.1128/MCB.20.5.1846-54.2000
  • Lellek H, Kirsten R, Diehl I, Apostel F, Buck F, Greeve J. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J Biol Chem 2000; 275:19848 - 19856; PMID: 10781591; http://dx.doi.org/10.1074/jbc.M001786200
  • Zhang W, Zhang X, Tian C, Wang T, Sarkis PTN, Fang Y, et al. Cytidine deaminase APOBEC3B interacts with heterogeneous nuclear ribonucleoprotein K and suppresses hepatitis B virus expression. Cell Microbiol 2008; 10:112 - 121; PMID: 17672864
  • Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 2011; In press
  • Narvaiza I, Linfesty DC, Greener BN, Hakata Y, Pintel DJ, Logue E, et al. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog 2009; 5:1000439; PMID: 19461882; http://dx.doi.org/10.1371/journal.ppat.1000439
  • Thielen BK, McNevin JP, McElrath MJ, Hunt BVS, Klein KC, Lingappa JR. Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms. J Biol Chem 2010; 285:27753 - 27766; PMID: 20615867; http://dx.doi.org/10.1074/jbc.M110.102822
  • Bulliard Y, Narvaiza I, Bertero A, Peddi S, Rohrig UF, Ortiz M, et al. Structure-function analyses point to a polynucleotide-accommodating groove essential for APOBEC3A restriction activities. J Virol 2011; 85:1765 - 1776; PMID: 21123384; http://dx.doi.org/10.1128/JVI.01651-10
  • Sweasy JB, Lang T, DiMaio D. Is base excision repair a tumor suppressor mechanism?. Cell Cycle 2006; 5:250 - 259; PMID: 16418580; http://dx.doi.org/10.4161/cc.5.3.2414
  • Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S, et al. APOBEC3A Is a Specific Inhibitor of the Early Phases of HIV-1 Infection in Myeloid Cells. PLoS Pathog 2011; 7:1002221; PMID: 21966267; http://dx.doi.org/10.1371/journal.ppat.1002221
  • Sawyer SL, Emerman M, Malik HS. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004; 2:275; PMID: 15269786; http://dx.doi.org/10.1371/journal.pbio.0020275
  • Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet 2007; 3:63; PMID: 17447845; http://dx.doi.org/10.1371/journal.pgen.0030063
  • OhAinle M, Kerns JA, Li MM, Malik HS, Emerman M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 2008; 4:249 - 259; PMID: 18779051; http://dx.doi.org/10.1016/j.chom.2008.07.005
  • Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436:1186 - 1190; PMID: 15995699; http://dx.doi.org/10.1038/nature03884
  • Gasser S, Raulet DH. The DNA damage response arouses the immune system. Cancer Res 2006; 66:3959 - 3962; PMID: 16618710; http://dx.doi.org/10.1158/0008-5472.CAN-05-4603
  • Gourzi P, Leonova T, Papavasiliou FN. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity 2006; 24:779 - 786; PMID: 16782033; http://dx.doi.org/10.1016/j.immuni.2006.03.021
  • Norman JM, Mashiba M, McNamara LA, Onafuwa-Nuga A, Chiari-Fort E, Shen W, et al. The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells. Nat Immunol 2011; 12:975 - 983; PMID: 21874023; http://dx.doi.org/10.1038/ni.2087
  • Zaheen A, Boulianne B, Parsa JY, Ramachandran S, Gommerman JL, Martin A. AID constrains germinal center size by rendering B cells susceptible to apoptosis. Blood 2009; 114:547 - 554; PMID: 19478044; http://dx.doi.org/10.1182/blood-2009-03-211763
  • Barré B, Coqueret O, Perkins ND. Regulation of activity and function of the p52 NFkappaB subunit following DNA damage. Cell Cycle 2010; 9:4795 - 4804; PMID: 21131783; http://dx.doi.org/10.4161/cc.9.24.14245
  • Xu R, Zhang X, Zhang W, Fang Y, Zheng S, Yu XF. Association of human APOBEC3 cytidine deaminases with the generation of hepatitis virus B x antigen mutants and hepatocellular carcinoma. Hepatology 2007; 46:1810 - 1820; PMID: 17847074; http://dx.doi.org/10.1002/hep.21893
  • Komatsu A, Nagasaki K, Fujimori M, Amano J, Miki Y. Identification of novel deletion polymorphisms in breast cancer. Int J Oncol 2008; 33:261 - 270
  • Ding Q, Chang CJ, Xie X, Xia W, Yang JY, Wang SC, et al. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest 2011; 121:4526 - 4536
  • Fritz EL, Papavasiliou FN. Cytidine deaminases: AIDing DNA demethylation?. Genes Dev 2010; 24:2107 - 2114
  • Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011; 145:423 - 434; PMID: 21496894; http://dx.doi.org/10.1016/j.cell.2011.03.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.