2,266
Views
57
CrossRef citations to date
0
Altmetric
Report

The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer

, , , &
Pages 1123-1130 | Received 28 Nov 2011, Accepted 31 Jan 2012, Published online: 15 Mar 2012

References

  • Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 2005; 66:4 - 34; PMID: 16399414; http://dx.doi.org/10.1016/j.urology.2005.07.062
  • Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J, European Association of Urology (EAU). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol 2008; 54:303 - 314; PMID: 18468779; http://dx.doi.org/10.1016/j.eururo.2008.04.051
  • Kiemeney LA, Witjes JA, Verbeek AL, Heijbroek RP, Debruyne FM, Dutch South-East Cooperative Urological Group. The clinical epidemiology of superficial bladder cancer. Br J Cancer 1993; 67:806 - 812; PMID: 8471440; http://dx.doi.org/10.1038/bjc.1993.147
  • Borden LS Jr, Clark PE, Hall MC. Bladder cancer. Curr Opin Oncol 2003; 15:227 - 233; PMID: 12778017; http://dx.doi.org/10.1097/00001622-200305000-00009
  • Hall MC, Chang SS, Dalbagni G, Pruthi RS, Seigne JD, Skinner EC, et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1 and Tis): 2007 update. J Urol 2007; 178:2314 - 2330; PMID: 17993339; http://dx.doi.org/10.1016/j.juro.2007.09.003
  • Cognetti F, Ruggeri EM, Felici A, Gallucci M, Muto G, Pollera CF, et al. Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann Oncol 2011; on behalf of the Study Group Epub ahead of print PMID: 21859900; http://dx.doi.org/10.1093/annonc/mdr354
  • Beekman KW, Bradley D, Hussain M. New molecular targets and novel agents in the treatment of advanced urothelial cancer. Semin Oncol 2007; 34:154 - 164; PMID: 17382799; http://dx.doi.org/10.1053/j.seminoncol.2006.12.007
  • Black PC, Agarwal PK, Dinney CP. Targeted therapies in bladder cancer—an update. Urol Oncol 2007; 25:433 - 438; PMID: 17826665; http://dx.doi.org/10.1016/j.urolonc.2007.05.011
  • Black PC, Dinney CP. Growth factors and receptors as prognostic markers in urothelial carcinoma. Curr Urol Rep 2008; 9:55 - 61; PMID: 18366975; http://dx.doi.org/10.1007/s11934-008-0011-6
  • Liou LS. Urothelial cancer biomarkers for detection and surveillance. Urology 2006; 67:25 - 33; PMID: 16530072; http://dx.doi.org/10.1016/j.urology.2006.01.034
  • Said N, Theodorescu D. Pathways of metastasis suppression in bladder cancer. Cancer Metastasis Rev 2009; 28:327 - 333; PMID: 20013033; http://dx.doi.org/10.1007/s10555-009-9197-4
  • Nijwening JH, Kuiken HJ, Beijersbergen RL. Screening for modulators of cisplatin sensitivity: unbiased screens reveal common themes. Cell Cycle 2011; 10:380 - 386; PMID: 21239890; http://dx.doi.org/10.4161/cc.10.3.14642
  • Yoshida S, Koga F, Tatokoro M, Kawakami S, Fujii Y, Kumagai J, et al. Low-dose Hsp90 inhibitors tumor-selectively sensitize bladder cancer cells to chemoradiotherapy. Cell Cycle 2011; 10:4291 - 4299; PMID: 22134243; http://dx.doi.org/10.4161/cc.10.24.18616
  • d'Azzo A, Bongiovanni A, Nastasi T. E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 2005; 6:429 - 441; PMID: 15882441; http://dx.doi.org/10.1111/j.1600-0854.2005.00294.x
  • Komada M. Controlling receptor downregulation by ubiquitination and deubiquitination. Curr Drug Discov Technol 2008; 5:78 - 84; PMID: 18537571; http://dx.doi.org/10.2174/157016308783769469
  • Hussain S, Zhang Y, Galardy PJ. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 2009; 8:1688 - 1697; PMID: 19448430; http://dx.doi.org/10.4161/cc.8.11.8739
  • Love KR, Catic A, Schlieker C, Ploegh HL. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 2007; 3:697 - 705; PMID: 17948018; http://dx.doi.org/10.1038/nchembio.2007.43
  • Niedzwiedz W, Patel KJ. “Dub” bing a tumor suppressor pathway. Cancer Cell 2005; 7:114 - 115; PMID: 15710323; http://dx.doi.org/10.1016/j.ccr.2005.01.018
  • Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773 - 786; PMID: 16325574; http://dx.doi.org/10.1016/j.cell.2005.11.007
  • Singhal S, Taylor MC, Baker RT. Deubiquitylating enzymes and disease. BMC Biochem 2008; 9:3; PMID: 19007433; http://dx.doi.org/10.1186/1471-2091-9-S1-S3
  • Stringer DK, Piper RC. Terminating protein ubiquitination: Hasta la vista, ubiquitin. Cell Cycle 2011; 10:3067 - 3071; PMID: 21926471; http://dx.doi.org/10.4161/cc.10.18.17191
  • Inuzuka H, Fukushima H, Shaik S, Liu P, Lau AW, Wei W. Mcl-1 ubiquitination and destruction. Oncotarget 2011; 2:239 - 244; PMID: 21608150
  • Neznanov N, Komarov AP, Neznanova L, Stanhope-Baker P, Gudkov AV. Proteotoxic stress targeted therapy (PSTT): induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib. Oncotarget 2011; 2:209 - 221; PMID: 21444945
  • Ma YM, Boucrot E, Villén J, Affar B, Gygi SP, Göttlinger HG, et al. Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation. J Biol Chem 2007; 282:9805 - 9812; PMID: 17261583; http://dx.doi.org/10.1074/jbc.M611635200
  • Naviglio S, Mattecucci C, Matoskova B, Nagase T, Nomura N, Di Fiore PP, et al. UBPY: a growth-regulated human ubiquitin isopeptidase. EMBO J 1998; 17:3241 - 3250; PMID: 9628861; http://dx.doi.org/10.1093/emboj/17.12.3241
  • Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. Regulation of epidermal growth factor receptor downregulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 2005; 16:5163 - 5174; PMID: 16120644; http://dx.doi.org/10.1091/mbc.E05-06-0560
  • Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, et al. The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res 2006; 66:8625 - 8632; PMID: 16951176; http://dx.doi.org/10.1158/0008-5472.CAN-06-1374
  • Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 2007; 26:976 - 986; PMID: 17290220; http://dx.doi.org/10.1038/sj.emboj.7601567
  • Allende-Vega N, Sparks A, Lane DP, Saville MK. MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene 2010; 29:432 - 441; PMID: 19838211; http://dx.doi.org/10.1038/onc.2009.330
  • Shi Y, Solomon LR, Pereda-Lopez A, Giranda VL, Luo Y, Johnson EF, et al. The deubiquitinase USP2A regulates the stability of Aurora A. J Biol Chem 2011; 286:38960 - 38968; PMID: 21890637; http://dx.doi.org/10.1074/jbc.M111.231498
  • Inuzuka H, Fukushima H, Shaik S, Wei W. Novel insights into the molecular mechanisms governing Mdm2 ubiquitination and destruction. Oncotarget 2010; 1:685 - 690; PMID: 21317463
  • Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 2004; 5:253 - 261; PMID: 15050917; http://dx.doi.org/10.1016/S1535-6108(04)00055-8
  • da Silva SD, Cunha IW, Nishimoto IN, Soares FA, Carraro DM, Kowalski LP, et al. Clinicopathological significance of ubiquitin-specific protease 2a (USP2a), fatty acid synthase (FASN), and ErbB2 expression in oral squamous cell carcinomas. Oral Oncol 2009; 45:134 - 139; PMID: 19362044; http://dx.doi.org/10.1016/j.oraloncology.2009.02.004
  • Sugino T, Baba K, Hoshi N, Aikawa K, Yamaguchi O, Suzuki T. Overexpression of fatty acid synthase in human urinary bladder cancer and combined expression of the synthase and Ki-67 as a predictor of prognosis of cancer patients. Med Mol Morphol 2011; 44:146 - 150; PMID: 21922386; http://dx.doi.org/10.1007/s00795-010-0517-0
  • Giet R, Petretti C, Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link?. Trends Cell Biol 2005; 15:241 - 250; PMID: 15866028; http://dx.doi.org/10.1016/j.tcb.2005.03.004
  • Liu HS, Ke CS, Cheng HC, Huang CY, Su CL. Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A. Mol Pharmacol 2011; 80:638 - 646; PMID: 21757545; http://dx.doi.org/10.1124/mol.111.072512
  • Fraizer GC, Diaz MF, Lee IL, Grossman HB, Sen S. Aurora-A/STK15/BTAK enhances chromosomal instability in bladder cancer cells. Int J Oncol 2004; 25:1631 - 1639; PMID: 15547700
  • Park HS, Park WS, Bondaruk J, Tanaka N, Katayama H, Lee S, et al. Quantitation of Aurora kinase A gene copy number in urine sediments and bladder cancer detection. J Natl Cancer Inst 2008; 100:1401 - 1411; PMID: 18812553; http://dx.doi.org/10.1093/jnci/djn304
  • Tseng YS, Tzeng CC, Huang CY, Chen PH, Chiu AW, Hsu PY, et al. Aurora-A overexpression associates with Ha-ras codon-12 mutation and blackfoot disease endemic area in bladder cancer. Cancer Lett 2006; 241:93 - 101; PMID: 16338065; http://dx.doi.org/10.1016/j.canlet.2005.10.014
  • Lei Y, Yan S, Ming-De L, Na L, Rui-Fa H. Prognostic significance of Aurora-A expression in human bladder cancer. Acta Histochem 2011; 113:514 - 518; PMID: 20598352; http://dx.doi.org/10.1016/j.acthis.2010.05.004
  • Freeman MR, Yoo JJ, Raab G, Soker S, Adam RM, Schneck FX, et al. Heparin-binding EGF-like growth factor is an autocrine growth factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J Clin Invest 1997; 99:1028 - 1036; PMID: 9062361; http://dx.doi.org/10.1172/JCI119230
  • Kim J, Keay SK, Freeman MR. Heparin-binding epidermal growth factor-like growth factor functionally antagonizes interstitial cystitis antiproliferative factor via mitogen-activated protein kinase pathway activation. BJU Int 2009; 103:541 - 546; PMID: 18990151; http://dx.doi.org/10.1111/j.1464-410X.2008.08097.x
  • Kim J, Ji M, DiDonato JA, Rackley RR, Kuang M, Sadhukhan PC, et al. An hTERT-immortalized human urothelial cell line that responds to anti-proliferative factor. In Vitro Cell Dev Biol Anim 2011; 47:2 - 9; PMID: 21136194; http://dx.doi.org/10.1007/s11626-010-9350-y
  • Shan J, Zhao W, Gu W. Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 2009; 36:469 - 476; PMID: 19917254; http://dx.doi.org/10.1016/j.molcel.2009.10.018
  • Liu D, Liao C, Wolgemuth DJ. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 2000; 224:388 - 400; PMID: 10926775; http://dx.doi.org/10.1006/dbio.2000.9776
  • Ji P, Agrawal S, Diederichs S, Bäumer N, Becker A, Cauvet T, et al. Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene 2005; 24:2739 - 2744; PMID: 15829981; http://dx.doi.org/10.1038/sj.onc.1208356
  • Wegiel B, Bjartell A, Tuomela J, Dizeyi N, Tinzl M, Helczynski L, et al. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. Natl Cancer Inst 2008; 100:1022 - 1036; PMID: 18612129; http://dx.doi.org/10.1093/jnci/djn214
  • Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA, et al. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther 2005; 4:1355 - 1360; PMID: 16294023; http://dx.doi.org/10.4161/cbt.4.12.2196
  • Holm C, Ora I, Brunhoff C, Anagnostaki L, Landberg G, Persson JL. Cyclin A1 expression and associations with disease characteristics in childhood acute lymphoblastic leukemia. Leuk Res 2006; 30:254 - 261; PMID: 16182364; http://dx.doi.org/10.1016/j.leukres.2005.07.010
  • Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP, et al. Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Proc Natl Acad Sci USA 2001; 98:6853 - 6858; PMID: 11381140; http://dx.doi.org/10.1073/pnas.121540098
  • Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363 - 397; PMID: 19489724; http://dx.doi.org/10.1146/annurev.biochem.78.082307.091526
  • Yang R, Morosetti R, Koeffler HP. Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Res 1997; 57:913 - 920; PMID: 9041194
  • Sweeney C, Murphy M, Kubelka M, Ravnik SE, Hawkins CF, Wolgemuth DJ, et al. A distinct cyclin A is expressed in germ cells in the mouse. Development 1996; 122:53 - 64; PMID: 8565853
  • Yang R, Müller C, Huynh V, Fung YK, Yee AS, Koeffler HP. Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol 1999; 19:2400 - 2407; PMID: 10022926
  • Müller-Tidow C, Wang W, Idos GE, Diederichs S, Yang R, Readhead C, et al. Cyclin A1 directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine residues: tissue-specific regulation of B-myb function. Blood 2001; 97:2091 - 2097; PMID: 11264176; http://dx.doi.org/10.1182/blood.V97.7.2091
  • Wolgemuth DJ. Function of the A-type cyclins during gametogenesis and early embryogenesis. Results Probl Cell Differ 2011; 53:391 - 413; PMID: 21630154; http://dx.doi.org/10.1007/978-3-642-19065-0_17
  • Wegiel B, Bjartell A, Ekberg J, Gadaleanu V, Brunhoff C, Persson JL. A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer. Oncogene 2005; 24:6385 - 6393; PMID: 16007189
  • Selvendiran K, Ahmed S, Dayton A, Ravi Y, Kuppusamy ML, Bratasz A, et al. HO-3867, a synthetic compound, inhibits the migration and invasion of ovarian carcinoma cells through downregulation of fatty acid synthase and focal adhesion kinase. Mol Cancer Res 2010; 8:1188 - 1197; PMID: 20713491; http://dx.doi.org/10.1158/1541-7786.MCR-10-0201
  • Yang W, Chung YG, Kim Y, Kim TK, Keay SK, Zhang CO, et al. Quantitative proteomics identifies a beta-catenin network as an element of the signaling response to Frizzled-8 protein-related antiproliferative factor. Mol Cell Proteomics 2011; 10:110; PMID: 21422242; http://dx.doi.org/10.1074/mcp.M110.007492

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.