1,225
Views
47
CrossRef citations to date
0
Altmetric
Report

An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells

, , &
Pages 1851-1861 | Published online: 01 May 2012

References

  • Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res 2001; 61:4301 - 5; PMID: 11389048
  • Blagosklonny MV, Darzynkiewicz Z. Cyclotherapy: protection of normal cells and unshielding of cancer cells. Cell Cycle 2002; 1:375 - 82; http://dx.doi.org/10.4161/cc.1.6.259; PMID: 12548008
  • van Leeuwen IM, Laín S. Pharmacological manipulation of the cell cycle and metabolism to protect normal tissues against conventional anticancer drugs. Oncotarget 2011; 2:274 - 6; PMID: 21512204
  • Blagosklonny MV, Robey R, Bates S, Fojo T. Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest 2000; 105:533 - 9; http://dx.doi.org/10.1172/JCI8625; PMID: 10683383
  • Blagosklonny MV. Sequential activation and inactivation of G2 checkpoints for selective killing of p53-deficient cells by microtubule-active drugs. Oncogene 2002; 21:6249 - 54; http://dx.doi.org/10.1038/sj.onc.1205793; PMID: 12214265
  • Rao B, van Leeuwen IM, Higgins M, Campbel J, Thompson AM, Lane DP, et al. Evaluation of an Actinomycin D/VX-680 aurora kinase inhibitor combination in p53-based cyclotherapy. Oncotarget 2010; 1:639 - 50; PMID: 21317459
  • Cheok CF, Kua N, Kaldis P, Lane DP. Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53. Cell Death Differ 2010; 17:1486 - 500; http://dx.doi.org/10.1038/cdd.2010.18; PMID: 20203688
  • Kranz D, Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 2006; 66:10274 - 80; http://dx.doi.org/10.1158/0008-5472.CAN-06-1527; PMID: 17079445
  • Apontes P, Leontieva OV, Demidenko ZN, Li F, Blagosklonny MV. Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture. Oncotarget 2011; 2:222 - 33; PMID: 21447859
  • Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005; 65:1918 - 24; http://dx.doi.org/10.1158/0008-5472.CAN-04-3576; PMID: 15753391
  • Tokalov SV, Abolmaali ND. Protection of p53 wild type cells from taxol by nutlin-3 in the combined lung cancer treatment. BMC Cancer 2010; 10:57; http://dx.doi.org/10.1186/1471-2407-10-57; PMID: 20178585
  • Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA Jr., Kinzler KW, et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci U S A 2009; 106:3964 - 9; http://dx.doi.org/10.1073/pnas.0813333106; PMID: 19225112
  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844 - 8; http://dx.doi.org/10.1126/science.1092472; PMID: 14704432
  • Verma R, Rigatti MJ, Belinsky GS, Godman CA, Giardina C. DNA damage response to the Mdm2 inhibitor nutlin-3. Biochem Pharmacol 2010; 79:565 - 74; http://dx.doi.org/10.1016/j.bcp.2009.09.020; PMID: 19788889
  • Valentine JM, Kumar S, Moumen A. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation. BMC Cancer 2011; 11:79; http://dx.doi.org/10.1186/1471-2407-11-79; PMID: 21338495
  • van Leeuwen IM, Higgins M, Campbell J, Brown CJ, McCarthy AR, Pirrie L, et al. Mechanism-specific signatures for small-molecule p53 activators. Cell Cycle 2011; 10:1590 - 8; http://dx.doi.org/10.4161/cc.10.10.15519; PMID: 21490429
  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008; 13:454 - 63; http://dx.doi.org/10.1016/j.ccr.2008.03.004; PMID: 18455128
  • Laín S, Midgley C, Sparks A, Lane EB, Lane DP. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp Cell Res 1999; 248:457 - 72; http://dx.doi.org/10.1006/excr.1999.4433; PMID: 10222137
  • Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A 1999; 96:9112 - 7; http://dx.doi.org/10.1073/pnas.96.16.9112; PMID: 10430904
  • Meissner T, Krause E, Vinkemeier U. Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett 2004; 576:27 - 30; http://dx.doi.org/10.1016/j.febslet.2004.08.056; PMID: 15474004
  • Smart P, Lane EB, Lane DP, Midgley C, Vojtesek B, Laín S. Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene 1999; 18:7378 - 86; http://dx.doi.org/10.1038/sj.onc.1203260; PMID: 10602494
  • Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 1998; 18:7288 - 93; PMID: 9819415
  • Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 2010; 17:982 - 9; http://dx.doi.org/10.1038/nsmb.1872; PMID: 20639885
  • Vassilev LT. p53 Activation by small molecules: application in oncology. J Med Chem 2005; 48:4491 - 9; http://dx.doi.org/10.1021/jm058174k; PMID: 15999986
  • Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med 2007; 13:23 - 31; http://dx.doi.org/10.1016/j.molmed.2006.11.002; PMID: 17126603
  • Efeyan A, Ortega-Molina A, Velasco-Miguel S, Herranz D, Vassilev LT, Serrano M. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 2007; 67:7350 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-07-0200; PMID: 17671205
  • Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 2008; 68:3193 - 203; http://dx.doi.org/10.1158/0008-5472.CAN-07-2780; PMID: 18451145
  • Korotchkina LG, Demidenko ZN, Gudkov AV, Blagosklonny MV. Cellular quiescence caused by the Mdm2 inhibitor nutlin-3A. Cell Cycle 2009; 8:3777 - 81; http://dx.doi.org/10.4161/cc.8.22.10121; PMID: 19855165
  • Huang B, Deo D, Xia M, Vassilev LT. Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Mol Cancer Res 2009; 7:1497 - 509; http://dx.doi.org/10.1158/1541-7786.MCR-09-0144; PMID: 19737973
  • Choong ML, Yang H, Lee MA, Lane DP. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 2009; 8:2810 - 8; http://dx.doi.org/10.4161/cc.8.17.9503; PMID: 19657224
  • Walterhouse D, Watson A. Optimal management strategies for rhabdomyosarcoma in children. Paediatr Drugs 2007; 9:391 - 400; http://dx.doi.org/10.2165/00148581-200709060-00006; PMID: 18052409
  • Wilms’ tumor: status report, 1990. By the National Wilms’ Tumor Study Committee. J Clin Oncol 1991; 9:877 - 87; PMID: 1849987
  • Goldberg IH. The interaction of actinomycin with DNA. Antibiot Chemother 1971; 17:67 - 86; PMID: 4142574
  • Goldberg IH, Rabinowitz M, Reich E. Basis of actinomycin action. II. Effect of actinomycin on the nucleoside triphosphate-inorganic pyrophosphate exchange. Proc Natl Acad Sci U S A 1963; 49:226 - 9; http://dx.doi.org/10.1073/pnas.49.2.226; PMID: 13948668
  • Goldberg IH, Reich E. Actinomycin inhibition of RNA synthesis directed by DNA. Fed Proc 1964; 23:958 - 64; PMID: 14209828
  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3:577 - 87; http://dx.doi.org/10.1016/S1535-6108(03)00134-X; PMID: 12842086
  • Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23:8902 - 12; http://dx.doi.org/10.1128/MCB.23.23.8902-8912.2003; PMID: 14612427
  • Jin A, Itahana K, O’Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24:7669 - 80; http://dx.doi.org/10.1128/MCB.24.17.7669-7680.2004; PMID: 15314174
  • Plunkett W, Huang P, Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs 1995; 6:Suppl 6 7 - 13; http://dx.doi.org/10.1097/00001813-199512006-00002; PMID: 8718419
  • Sigmond J, Kamphuis JA, Laan AC, Hoebe EK, Bergman AM, Peters GJ. The synergistic interaction of gemcitabine and cytosine arabinoside with the ribonucleotide reductase inhibitor triapine is schedule dependent. Biochem Pharmacol 2007; 73:1548 - 57; http://dx.doi.org/10.1016/j.bcp.2007.01.025; PMID: 17324380
  • Grant S. Ara-C: cellular and molecular pharmacology. Adv Cancer Res 1998; 72:197 - 233; http://dx.doi.org/10.1016/S0065-230X(08)60703-4; PMID: 9338077
  • Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, et al. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol Pharmacol 1990; 38:567 - 72; PMID: 2233693
  • Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I, et al. In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res 2005; 65:9510 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-05-0989; PMID: 16230416
  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4:253 - 65; http://dx.doi.org/10.1038/nrc1317; PMID: 15057285
  • Shen H, Moran DM, Maki CG. Transient nutlin-3a treatment promotes endoreduplication and the generation of therapy-resistant tetraploid cells. Cancer Res 2008; 68:8260 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-08-1901; PMID: 18922897
  • King RW. When 2+2=5: the origins and fates of aneuploid and tetraploid cells. Biochim Biophys Acta 2008; 1786:4 - 14; PMID: 18703117
  • Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17:157 - 62; http://dx.doi.org/10.1016/j.gde.2007.02.011; PMID: 17324569
  • Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 2012; 21:266 - 81; http://dx.doi.org/10.1016/j.ccr.2011.12.020; PMID: 22340598
  • Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N, et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet 2011; 7:e1002135; http://dx.doi.org/10.1371/journal.pgen.1002135; PMID: 21698133
  • Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Lüscher B, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A 2012; 109:E187 - 96; http://dx.doi.org/10.1073/pnas.1105304109; PMID: 22190494
  • Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14:312 - 23; http://dx.doi.org/10.1016/j.ccr.2008.09.001; PMID: 18835033
  • Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011; 20:487 - 99; http://dx.doi.org/10.1016/j.ccr.2011.09.004; PMID: 22014574
  • Laín S, Xirodimas D, Lane DP. Accumulating active p53 in the nucleus by inhibition of nuclear export: a novel strategy to promote the p53 tumor suppressor function. Exp Cell Res 1999; 253:315 - 24; http://dx.doi.org/10.1006/excr.1999.4672; PMID: 10585254
  • Newlands ES, Rustin GJ, Brampton MH. Phase I trial of elactocin. Br J Cancer 1996; 74:648 - 9; http://dx.doi.org/10.1038/bjc.1996.415; PMID: 8761384
  • Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, Timmermans PB, et al. Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res 2009; 69:510 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-08-0858; PMID: 19147564
  • Gray LJ, Bjelogrlic P, Appleyard VC, Thompson AM, Jolly CE, Lain S, et al. Selective induction of apoptosis by leptomycin B in keratinocytes expressing HPV oncogenes. Int J Cancer 2007; 120:2317 - 24; http://dx.doi.org/10.1002/ijc.22591; PMID: 17290384
  • Hietanen S, Lain S, Krausz E, Blattner C, Lane DP. Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci U S A 2000; 97:8501 - 6; http://dx.doi.org/10.1073/pnas.97.15.8501; PMID: 10900010
  • Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475:231 - 4; http://dx.doi.org/10.1038/nature10167; PMID: 21753854
  • Forgues M, Difilippantonio MJ, Linke SP, Ried T, Nagashima K, Feden J, et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 2003; 23:5282 - 92; http://dx.doi.org/10.1128/MCB.23.15.5282-5292.2003; PMID: 12861014
  • Budhu AS, Wang XW. Loading and unloading: orchestrating centrosome duplication and spindle assembly by Ran/Crm1. Cell Cycle 2005; 4:1510 - 4; http://dx.doi.org/10.4161/cc.4.11.2187; PMID: 16294017
  • Andreeff M, Kojima K, Ruvolo V, Younes A, Wei W, Konopleva M, et al. Pharmacodynamic biomarkers in the Phase 1 Trial of RG7112, a small-molecule MDM2 antagonist in leukemia. 52nd Annual Meeting of the American Society of Hematology, Orlando, FL, USA 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.