663
Views
13
CrossRef citations to date
0
Altmetric
Extra Views

Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding

, &
Pages 2239-2247 | Published online: 15 Jun 2012

References

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 2009; 9:862 - 73; http://dx.doi.org/10.1038/nrc2763; PMID: 19935675
  • Böttger A, Böttger V, Garcia-Echeverria C, Chène P, Hochkeppel HK, Sampson W, et al. Molecular characterization of the hdm2-p53 interaction. J Mol Biol 1997; 269:744 - 56; http://dx.doi.org/10.1006/jmbi.1997.1078; PMID: 9223638
  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274:948 - 53; http://dx.doi.org/10.1126/science.274.5289.948; PMID: 8875929
  • Zhong H, Carlson HA. Computational studies and peptidomimetic design for the human p53-MDM2 complex. Proteins 2005; 58:222 - 34; http://dx.doi.org/10.1002/prot.20275; PMID: 15505803
  • Zondlo SC, Lee AE, Zondlo NJ. Determinants of specificity of MDM2 for the activation domains of p53 and p65: proline27 disrupts the MDM2-binding motif of p53. Biochemistry 2006; 45:11945 - 57; http://dx.doi.org/10.1021/bi060309g; PMID: 17002294
  • Böttger A, Böttger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7:860 - 9; http://dx.doi.org/10.1016/S0960-9822(06)00374-5; PMID: 9382809
  • Li C, Pazgier M, Li C, Yuan W, Liu M, Wei G, et al. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J Mol Biol 2010; 398:200 - 13; http://dx.doi.org/10.1016/j.jmb.2010.03.005; PMID: 20226197
  • Lane DP, Cheok CF, Lain S. p53-based cancer therapy. Cold Spring Harb Perspect Biol 2010; 2:a001222; http://dx.doi.org/10.1101/cshperspect.a001222; PMID: 20463003
  • Chen J. Intrinsically disordered p53 extreme C-terminus binds to S100B(betabeta) through “fly-casting”. J Am Chem Soc 2009; 131:2088 - 9; http://dx.doi.org/10.1021/ja809547p; PMID: 19216110
  • Gsponer J, Babu MM. The rules of disorder or why disorder rules. Prog Biophys Mol Biol 2009; 99:94 - 103; http://dx.doi.org/10.1016/j.pbiomolbio.2009.03.001; PMID: 19344736
  • Huang Y, Liu Z. Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: a critical assessment of the “fly-casting” mechanism. J Mol Biol 2009; 393:1143 - 59; http://dx.doi.org/10.1016/j.jmb.2009.09.010; PMID: 19747922
  • Dastidar SG, Lane DP, Verma CS. Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100. BMC Bioinformatics 2009; 10:6; http://dx.doi.org/10.1186/1471-2105-10-S15-S6; PMID: 19126227
  • Dastidar SG. others a. Forces mediating protein-protein interactions: a computational study of p53 “approaching” MDM2. Theor Chem Acc 2010; 125:621; http://dx.doi.org/10.1007/s00214-009-0682-1
  • Dunker AK, Uversky VN. Signal transduction via unstructured protein conduits. Nat Chem Biol 2008; 4:229 - 30; http://dx.doi.org/10.1038/nchembio0408-229; PMID: 18347590
  • Wang Y, Fisher JC, Mathew R, Ou L, Otieno S, Sublet J, et al. Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21. Nat Chem Biol 2011; 7:214 - 21; http://dx.doi.org/10.1038/nchembio.536; PMID: 21358637
  • Chen HF. Molecular dynamics simulation of phosphorylated KID post-translational modification. PLoS One 2009; 4:e6516; http://dx.doi.org/10.1371/journal.pone.0006516; PMID: 19654879
  • Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 2008; 98:85 - 106; http://dx.doi.org/10.1016/j.pbiomolbio.2008.05.007; PMID: 18619997
  • Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 2004; 11:358 - 64; http://dx.doi.org/10.1038/nsmb746; PMID: 15024385
  • Shoemaker BA, Portman JJ, Wolynes PG. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci U S A 2000; 97:8868 - 73; http://dx.doi.org/10.1073/pnas.160259697; PMID: 10908673
  • Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 2007; 447:1021 - 5; http://dx.doi.org/10.1038/nature05858; PMID: 17522630
  • Trizac E, Levy Y, Wolynes PG. Capillarity theory for the fly-casting mechanism. Proc Natl Acad Sci U S A 2010; 107:2746 - 50; http://dx.doi.org/10.1073/pnas.0914727107; PMID: 20133683
  • Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW. Simulating disorder-order transitions in molecular recognition of unstructured proteins: where folding meets binding. Proc Natl Acad Sci U S A 2003; 100:5148 - 53; http://dx.doi.org/10.1073/pnas.0531373100; PMID: 12697905
  • Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, et al. Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol Biol 2005; 350:587 - 98; http://dx.doi.org/10.1016/j.jmb.2005.05.010; PMID: 15953616
  • Buch I, Giorgino T, De Fabritiis G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 2011; 108:10184 - 9; http://dx.doi.org/10.1073/pnas.1103547108; PMID: 21646537
  • Dror RO, Arlow DH, Borhani DW, Jensen MO, Piana S, Shaw DE. Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci U S A 2009; 106:4689 - 94; http://dx.doi.org/10.1073/pnas.0811065106; PMID: 19258456
  • Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, et al. Atomic-level characterization of the structural dynamics of proteins. Science 2010; 330:341 - 6; http://dx.doi.org/10.1126/science.1187409; PMID: 20947758
  • Dastidar SG, Lane DP, Verma CS. Multiple peptide conformations give rise to similar binding affinities: molecular simulations of p53-MDM2. J Am Chem Soc 2008; 130:13514 - 5; http://dx.doi.org/10.1021/ja804289g; PMID: 18800837
  • Liu Z, Olejniczak ET, Fesik SW. Over-expression of the human MDM2 p53 binding domain by fusion to a p53 transactivation peptide. Protein Expr Purif 2004; 37:493 - 8; http://dx.doi.org/10.1016/j.pep.2004.06.036; PMID: 15358376
  • Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 2002; 323:491 - 501; http://dx.doi.org/10.1016/S0022-2836(02)00852-5; PMID: 12381304
  • Medina M, Abagyan R, Gómez-Moreno C, Fernandez-Recio J. Docking analysis of transient complexes: interaction of ferredoxin-NADP+ reductase with ferredoxin and flavodoxin. Proteins 2008; 72:848 - 62; http://dx.doi.org/10.1002/prot.21979; PMID: 18260112
  • Waas WF, Dalby KN. Transient protein-protein interactions and a random-ordered kinetic mechanism for the phosphorylation of a transcription factor by extracellular-regulated protein kinase 2. J Biol Chem 2002; 277:12532 - 40; http://dx.doi.org/10.1074/jbc.M110523200; PMID: 11812784
  • Buolamwini JK, Addo J, Kamath S, Patil S, Mason D, Ores M. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr Cancer Drug Targets 2005; 5:57 - 68; http://dx.doi.org/10.2174/1568009053332672; PMID: 15720190
  • Khoury K, Popowicz GM, Holak TA, Dömling A. The p53-MDM2/MDMX axis – A chemotype perspective. Med Chem Commun 2011; 2:246 - 60; http://dx.doi.org/10.1039/c0md00248h
  • Nicholson J, Hupp TR. The molecular dynamics of MDM2. Cell Cycle 2010; 9:1878 - 81; http://dx.doi.org/10.4161/cc.9.10.11597; PMID: 20436290
  • Joseph TL, Madhumalar A, Brown CJ, Lane DP, Verma CS. Differential binding of p53 and nutlin to MDM2 and MDMX: computational studies. Cell Cycle 2010; 9:1167 - 81; http://dx.doi.org/10.4161/cc.9.6.11067; PMID: 20190571
  • Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 2006; 23:251 - 63; http://dx.doi.org/10.1016/j.molcel.2006.05.029; PMID: 16857591
  • Coutts AS, Adams CJ, La Thangue NB. p53 ubiquitination by Mdm2: a never ending tail?. DNA Repair (Amst) 2009; 8:483 - 90; http://dx.doi.org/10.1016/j.dnarep.2009.01.008; PMID: 19217357
  • Popowicz GM, Czarna A, Rothweiler U, Szwagierczak A, Krajewski M, Weber L, et al. Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle 2007; 6:2386 - 92; http://dx.doi.org/10.4161/cc.6.19.4740; PMID: 17938582
  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844 - 8; http://dx.doi.org/10.1126/science.1092472; PMID: 14704432
  • Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F. NMR structure of a complex between MDM2 and a small molecule inhibitor. J Biomol NMR 2004; 30:163 - 73; http://dx.doi.org/10.1023/B:JNMR.0000048856.84603.9b; PMID: 15557803
  • Liu Y, Lane DP, Verma CS. Systematic mutational analysis of an ubiquitin ligase (MDM2)-binding peptide: computational studies. Theor Chem Acc 2011; 130:1145 - 54; http://dx.doi.org/10.1007/s00214-011-1049-y
  • Kashuba E, Yurchenko M, Yenamandra SP, Snopok B, Szekely L, Bercovich B, et al. Epstein-Barr virus-encoded EBNA-5 forms trimolecular protein complexes with MDM2 and p53 and inhibits the transactivating function of p53. Int J Cancer 2011; 128:817 - 25; http://dx.doi.org/10.1002/ijc.25414; PMID: 20473904
  • Lane DP, Brown CJ, Verma C, Cheok CF. New insights into p53 based therapy. Discov Med 2011; 12:107 - 17; PMID: 21878188
  • Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. Science 1991; 254:1598 - 603; http://dx.doi.org/10.1126/science.1749933; PMID: 1749933
  • García AE. Large-amplitude nonlinear motions in proteins. Phys Rev Lett 1992; 68:2696 - 9; http://dx.doi.org/10.1103/PhysRevLett.68.2696; PMID: 10045464
  • Kitao A, Hayward S, Go N. Energy landscape of a native protein: jumping-among-minima model. Proteins 1998; 33:496 - 517; http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4<496::AID-PROT4>3.0.CO;2-1; PMID: 9849935
  • Miyashita O, Onuchic JN, Wolynes PG. Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci U S A 2003; 100:12570 - 5; http://dx.doi.org/10.1073/pnas.2135471100; PMID: 14566052
  • Xie A, Kelemen L, Hendriks J, White BJ, Hellingwerf KJ, Hoff WD. Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation. Biochemistry 2001; 40:1510 - 7; http://dx.doi.org/10.1021/bi002449a; PMID: 11327809
  • Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, et al. Mechanical unfolding intermediates in titin modules. Nature 1999; 402:100 - 3; http://dx.doi.org/10.1038/47083; PMID: 10573426
  • Buehler MJ. Mechanics of Protein Crystals: Atomistic Modeling of Elasticity and Fracture. J Theor and comput. Nanotechnology 2006; 3:670 - 83
  • Hyeon C, Onuchic JN. Mechanical control of the directional stepping dynamics of the kinesin motor. Proc Natl Acad Sci U S A 2007; 104:17382 - 7; http://dx.doi.org/10.1073/pnas.0708828104; PMID: 17959770
  • Whitford PC, Onuchic JN, Wolynes PG. Energy landscape along an enzymatic reaction trajectory: hinges or cracks?. HFSP J 2008; 2:61 - 4; http://dx.doi.org/10.2976/1.2894846; PMID: 19404472
  • de Graff AM, Shannon G, Farrell DW, Williams PM, Thorpe MF. Protein unfolding under force: crack propagation in a network. Biophys J 2011; 101:736 - 44; http://dx.doi.org/10.1016/j.bpj.2011.05.072; PMID: 21806942
  • Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE. How does a drug molecule find its target binding site?. J Am Chem Soc 2011; 133:9181 - 3; http://dx.doi.org/10.1021/ja202726y; PMID: 21545110
  • Galea CA, Nourse A, Wang Y, Sivakolundu SG, Heller WT, Kriwacki RW. Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27 Kip1. J Mol Biol 2008; 376:827 - 38; http://dx.doi.org/10.1016/j.jmb.2007.12.016; PMID: 18177895
  • Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target. Chemes LBSánchez IEde Prat-Gay GJ. Mol Biol 2011; 412:267 - 84; http://dx.doi.org/10.1016/j.jmb.2011.07.015
  • Isin EM, Guengerich FP. Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4. J Biol Chem 2007; 282:6863 - 74; http://dx.doi.org/10.1074/jbc.M610346200; PMID: 17200113
  • Joseph TL, Lane D, Verma CS. Stapled peptides in the p53 pathway: computer simulations reveal novel interactions of the staples with the target protein. Cell Cycle 2010; 9:4560 - 8; http://dx.doi.org/10.4161/cc.9.22.13816; PMID: 21088491
  • Kim YW, Grossmann TN, Verdine GL. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 2011; 6:761 - 71; http://dx.doi.org/10.1038/nprot.2011.324; PMID: 21637196

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.