647
Views
11
CrossRef citations to date
0
Altmetric
Perspective

Understanding the origins of UV-induced recombination through manipulation of sister chromatid cohesion

, , , &
Pages 3937-3944 | Published online: 17 Sep 2012

References

  • Resnick MA. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol 1976; 59:97 - 106; http://dx.doi.org/10.1016/S0022-5193(76)80025-2; PMID: 940351
  • Hicks WM, Kim M, Haber JE. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 2010; 329:82 - 5; http://dx.doi.org/10.1126/science.1191125; PMID: 20595613
  • Hicks WM, Yamaguchi M, Haber JE. Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci USA 2011; 108:3108 - 15; http://dx.doi.org/10.1073/pnas.1019660108; PMID: 21292986
  • Westmoreland J, Ma W, Yan Y, Van Hulle K, Malkova A, Resnick MA. RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends. PLoS Genet 2009; 5:e1000656; http://dx.doi.org/10.1371/journal.pgen.1000656; PMID: 19763170
  • Andersen SL, Sekelsky J. Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes. Bioessays 2010; 32:1058 - 66; http://dx.doi.org/10.1002/bies.201000087; PMID: 20967781
  • Haber JE, Ira G, Malkova A, Sugawara N. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday’s model. Philos Trans R Soc Lond B Biol Sci 2004; 359:79 - 86; http://dx.doi.org/10.1098/rstb.2003.1367; PMID: 15065659
  • Kadyk LC, Hartwell LH. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 1992; 132:387 - 402; PMID: 1427035
  • Kadyk LC, Hartwell LH. Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 1993; 133:469 - 87; PMID: 8454200
  • Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 2005; 25:7158 - 69; http://dx.doi.org/10.1128/MCB.25.16.7158-7169.2005; PMID: 16055725
  • Fasullo M, Dong Z, Sun M, Zeng L. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair (Amst) 2005; 4:1240 - 51; http://dx.doi.org/10.1016/j.dnarep.2005.06.006; PMID: 16039914
  • Rapp A, Greulich KO. After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 2004; 117:4935 - 45; http://dx.doi.org/10.1242/jcs.01355; PMID: 15367581
  • Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci USA 1975; 72:358 - 61; http://dx.doi.org/10.1073/pnas.72.1.358; PMID: 1054510
  • Holliday R. The recombination, repair and modification of DNA. DNA Repair (Amst) 2011; 10:993 - 9; http://dx.doi.org/10.1016/j.dnarep.2011.04.005; PMID: 22066132
  • Haber JE. Evolution of Models of Homologous Recombination. In: Lankenau REaD-H, ed. Recombination and meiosis. Berlin: Springer-Verlag, 2008:1-64.
  • Lee GS, Neiditch MB, Salus SS, Roth DB. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 2004; 117:171 - 84; http://dx.doi.org/10.1016/S0092-8674(04)00301-0; PMID: 15084256
  • Fasullo M, Sun M. UV but not X rays stimulate homologous recombination between sister chromatids and homologs in a Saccharomyces cerevisiae mec1 (ATR) hypomorphic mutant. Mutat Res 2008; 648:73 - 81; http://dx.doi.org/10.1016/j.mrfmmm.2008.09.009; PMID: 18929581
  • St Charles J, Hazkani-Covo E, Yin Y, Andersen SL, Dietrich FS, Greenwell PW, et al. High-resolution genome-wide analysis of irradiated (UV and γ-rays) diploid yeast cells reveals a high frequency of genomic loss of heterozygosity (LOH) events. Genetics 2012; 190:1267 - 84; http://dx.doi.org/10.1534/genetics.111.137927; PMID: 22267500
  • Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci USA 2008; 105:11845 - 50; http://dx.doi.org/10.1073/pnas.0804529105; PMID: 18701715
  • Resnick MA, Setlow JK. Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J Bacteriol 1972; 109:979 - 86; PMID: 4551759
  • Wheatcroft R, Cox BS, Haynes RH. Repair of UV-induced DNA damage and survival in yeast. I. Dimer excision. Mutat Res 1975; 30:209 - 18; PMID: 1107831
  • Resnick MA, Westmoreland J, Amaya E, Bloom K. UV-induced damage and repair in centromere DNA of yeast. Mol Gen Genet 1987; 210:16 - 22; http://dx.doi.org/10.1007/BF00337753; PMID: 3323836
  • Lam LH, Reynolds RJ. A sensitive, enzymatic assay for the detection of closely opposed cyclobutyl pyrimidine dimers induced in human diploid fibroblasts. Mutat Res 1986; 166:187 - 98; http://dx.doi.org/10.1016/0167-8817(86)90017-9; PMID: 2429177
  • Franklin WA, Doetsch PW, Haseltine WA. Structural determination of the ultraviolet light-induced thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct. Nucleic Acids Res 1985; 13:5317 - 25; http://dx.doi.org/10.1093/nar/13.14.5317; PMID: 4022781
  • Setlow RB. Cyclobutane-type pyrimidine dimers in polynucleotides. Science 1966; 153:379 - 86; http://dx.doi.org/10.1126/science.153.3734.379; PMID: 5328566
  • E.C FRIEDBERG GCW. W. SIEDE, R. D. WOOD, R. A. SCHULTZ DNA Repair and Mutagenesis. Washington DC.: ASM press, 2006.
  • Galli A, Schiestl RH. Cell division transforms mutagenic lesions into deletion-recombinagenic lesions in yeast cells. Mutat Res 1999; 429:13 - 26; http://dx.doi.org/10.1016/S0027-5107(99)00097-4; PMID: 10434021
  • Galli A, Schiestl RH. On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol Gen Genet 1995; 248:301 - 10; http://dx.doi.org/10.1007/BF02191597; PMID: 7565592
  • Fabre F. Induced intragenic recombination in yeast can occur during the G1 mitotic phase. Nature 1978; 272:795 - 8; http://dx.doi.org/10.1038/272795a0; PMID: 347306
  • Lee PS, Petes TD. From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events. Proc Natl Acad Sci USA 2010; 107:7383 - 8; http://dx.doi.org/10.1073/pnas.1001940107; PMID: 20231456
  • Reynolds RJ. Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae. Mutat Res 1987; 184:197 - 207; http://dx.doi.org/10.1016/0167-8817(87)90017-4; PMID: 2444878
  • Giannattasio M, Follonier C, Tourrière H, Puddu F, Lazzaro F, Pasero P, et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol Cell 2010; 40:50 - 62; http://dx.doi.org/10.1016/j.molcel.2010.09.004; PMID: 20932474
  • Symington LS. Initiation and completion of spontaneous mitotic recombination occur in different cell cycle phases. Proc Natl Acad Sci USA 2010; 107:8045 - 6; http://dx.doi.org/10.1073/pnas.1003050107; PMID: 20418501
  • Covo S, Westmoreland JW, Gordenin DA, Resnick MA. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet 2010; 6:e1001006; http://dx.doi.org/10.1371/journal.pgen.1001006; PMID: 20617204
  • Xiong B, Gerton JL. Regulators of the cohesin network. Annu Rev Biochem 2010; 79:131 - 53; http://dx.doi.org/10.1146/annurev-biochem-061708-092640; PMID: 20331362
  • Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 1997; 91:47 - 57; http://dx.doi.org/10.1016/S0092-8674(01)80008-8; PMID: 9335334
  • Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 2008; 321:566 - 9; http://dx.doi.org/10.1126/science.1157880; PMID: 18653894
  • Ström L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 2007; 317:242 - 5; http://dx.doi.org/10.1126/science.1140649; PMID: 17626884
  • Ström L. Additional proof for the importance of Eco1 for DNA double-strand break repair. Cell Cycle 2010; 9:3644; http://dx.doi.org/10.4161/cc.9.18.13182; PMID: 20930507
  • Sjögren C, Ström L. S-phase and DNA damage activated establishment of sister chromatid cohesion--importance for DNA repair. Exp Cell Res 2010; 316:1445 - 53; http://dx.doi.org/10.1016/j.yexcr.2009.12.018; PMID: 20043905
  • Cortés-Ledesma F, Aguilera A. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 2006; 7:919 - 26; http://dx.doi.org/10.1038/sj.embor.7400774; PMID: 16888651
  • Covo S, Westmoreland JW, Reddy AK, Gordenin DA, Resnick MA. RAD53 is limiting in double-strand break repair and in protection against toxicity associated with ribonucleotide reductase inhibition. DNA Repair (Amst) 2012; 11:317 - 23; http://dx.doi.org/10.1016/j.dnarep.2011.12.008; PMID: 22277748
  • Ma W, Panduri V, Sterling JF, Van Houten B, Gordenin DA, Resnick MA. The transition of closely opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA polymerase delta and Rad27/Fen1. Mol Cell Biol 2009; 29:1212 - 21; http://dx.doi.org/10.1128/MCB.01499-08; PMID: 19075004
  • Ma W, Westmoreland JW, Gordenin DA, Resnick MA. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet 2011; 7:e1002059; http://dx.doi.org/10.1371/journal.pgen.1002059; PMID: 21552545
  • Ma W, Westmoreland J, Nakai W, Malkova A, Resnick MA. Characterizing resection at random and unique chromosome double-strand breaks and telomere ends. Methods Mol Biol 2011; 745:15 - 31; http://dx.doi.org/10.1007/978-1-61779-129-1_2; PMID: 21660686
  • Ma W, Resnick MA, Gordenin DA. Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Nucleic Acids Res 2008; 36:1836 - 46; http://dx.doi.org/10.1093/nar/gkm1148; PMID: 18267974
  • Game JC, Cox BS. Synergistic interactions between rad mutations in yeast. Mutat Res 1973; 20:35 - 44; http://dx.doi.org/10.1016/0027-5107(73)90095-X; PMID: 4586553
  • Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 2004; 16:991 - 1002; http://dx.doi.org/10.1016/j.molcel.2004.11.027; PMID: 15610741
  • Ström L, Lindroos HB, Shirahige K, Sjögren C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 2004; 16:1003 - 15; http://dx.doi.org/10.1016/j.molcel.2004.11.026; PMID: 15610742
  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40:179 - 204; http://dx.doi.org/10.1016/j.molcel.2010.09.019; PMID: 20965415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.