3,352
Views
129
CrossRef citations to date
0
Altmetric
Review

Developmental pathways in colon cancer

Crosstalk between WNT, BMP, Hedgehog and Notch

, , &
Pages 4344-4351 | Published online: 03 Oct 2012

References

  • Geissler K, Zach O. Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway. Ann Hematol 2012; 91:645 - 69; http://dx.doi.org/10.1007/s00277-012-1435-0; PMID: 22418742
  • Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997; 278:1059 - 64; http://dx.doi.org/10.1126/science.278.5340.1059; PMID: 9353180
  • American Cancer Society, Colorectal Cancer Facts & Figures 2011-2013; http://www.cancer.org/Research/CancerFactsFigures/ColorectalCancerFactsFigures/colorectal-cancer-facts-figures-2011-2013-page.
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69 - 90; http://dx.doi.org/10.3322/caac.20107; PMID: 21296855
  • Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61:212 - 36; http://dx.doi.org/10.3322/caac.20121; PMID: 21685461
  • Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, et al. Colorectal cancer. Lancet 2010; 375:1030 - 47; http://dx.doi.org/10.1016/S0140-6736(10)60353-4; PMID: 20304247
  • Takebe N, Ivy SP. Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 2010; 16:3106 - 12; http://dx.doi.org/10.1158/1078-0432.CCR-09-2934; PMID: 20530695
  • Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8:97 - 106; http://dx.doi.org/10.1038/nrclinonc.2010.196; PMID: 21151206
  • van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 2005; 11:496 - 502; http://dx.doi.org/10.1016/j.molmed.2005.09.008; PMID: 16214417
  • Lea MA. Recently identified and potential targets for colon cancer treatment. Future Oncol 2010; 6:993 - 1002; http://dx.doi.org/10.2217/fon.10.53; PMID: 20528236
  • Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 2011; 474:318 - 26; http://dx.doi.org/10.1038/nature10212; PMID: 21677748
  • Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papvassiliou AG. Concise review: colorectal stem cells. Stem Cells 2012; 30:363 - 71; http://dx.doi.org/10.1002/stem.1031; PMID: 22232074
  • Burgess AW, Faux MC, Layton MJ, Ramsay RG. Wnt signaling and colon tumorigenesis--a view from the periphery. Exp Cell Res 2011; 317:2748 - 58; http://dx.doi.org/10.1016/j.yexcr.2011.08.010; PMID: 21884696
  • Hardwick JC, Kodach LL, Offerhaus GJ, van den Brink GR. Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 2008; 8:806 - 12; http://dx.doi.org/10.1038/nrc2467; PMID: 18756288
  • Kosinski C, Li VSW, Chan ASY, Zhang J, Ho C, Tsui WY, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 2007; 104:15418 - 23; http://dx.doi.org/10.1073/pnas.0707210104; PMID: 17881565
  • Botchkina G. Colon cancer stem cells - From basic to clinical application. [epub ahead of print] Cancer Lett 2012; http://dx.doi.org/10.1016/j.canlet.2012.04.006; PMID: 22537805
  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003 - 7; http://dx.doi.org/10.1038/nature06196; PMID: 17934449
  • Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget 2010; 1:387 - 95; PMID: 21311095
  • Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011; 6:479 - 507; http://dx.doi.org/10.1146/annurev-pathol-011110-130235; PMID: 21090969
  • Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61:759 - 67; http://dx.doi.org/10.1016/0092-8674(90)90186-I; PMID: 2188735
  • Knudson AG. Mutation and human cancer. Adv Cancer Res 1973; 17:317 - 52; http://dx.doi.org/10.1016/S0065-230X(08)60534-5
  • Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer 2001; 1:157 - 62; http://dx.doi.org/10.1038/35101031; PMID: 11905807
  • Baker DJ, van Deursen JM. Chromosome missegregation causes colon cancer by APC loss of heterozygosity. Cell Cycle 2010; 9:1711 - 6; http://dx.doi.org/10.4161/cc.9.9.11314; PMID: 20404532
  • Michor F, Iwasa Y, Rajagopalan H, Lengauer C, Nowak MA. Linear model of colon cancer initiation. Cell Cycle 2004; 3:358 - 62; http://dx.doi.org/10.4161/cc.3.3.690; PMID: 14726709
  • Amos-Landgraf JM, Clipson L, Newton MA, Dove WF. The many ways to open the gate to colon cancer. Cell Cycle 2012; 11:1261 - 2; http://dx.doi.org/10.4161/cc.19888; PMID: 22421162
  • Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149:1192 - 205; http://dx.doi.org/10.1016/j.cell.2012.05.012; PMID: 22682243
  • Hoffman J, Kuhnert F, Davis CR, Kuo CJ. Wnts as essential growth factors for the adult small intestine and colon. Cell Cycle 2004; 3:554 - 7; http://dx.doi.org/10.4161/cc.3.5.858; PMID: 15044853
  • Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 2012; 31:2670 - 84; http://dx.doi.org/10.1038/emboj.2012.146; PMID: 22617420
  • Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2011; 112:3491 - 501; http://dx.doi.org/10.1002/jcb.23287; PMID: 21793042
  • Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 2005; 38:439 - 46; http://dx.doi.org/10.1016/j.ceca.2005.06.022; PMID: 16099039
  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281:1509 - 12; http://dx.doi.org/10.1126/science.281.5382.1509; PMID: 9727977
  • Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 1999; 285:1923 - 6; http://dx.doi.org/10.1126/science.285.5435.1923; PMID: 10489374
  • Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 2001; 28:53 - 7; http://dx.doi.org/10.1038/ng0501-53; PMID: 11326276
  • Mj F, Cheng N, Abott D, Leonticu V, Engelhardt JF. WNT3A/Beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 2002; 227:33398 - 410
  • Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, et al. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 1999; 96:1603 - 8; http://dx.doi.org/10.1073/pnas.96.4.1603; PMID: 9990071
  • Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155:1033 - 8; http://dx.doi.org/10.1016/S0002-9440(10)65204-2; PMID: 10514384
  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 1999; 18:2883 - 91; http://dx.doi.org/10.1038/sj.onc.1202627; PMID: 10362259
  • Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 1999; 154:515 - 23; http://dx.doi.org/10.1016/S0002-9440(10)65297-2; PMID: 10027409
  • Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001; 61:6050 - 4; PMID: 11507052
  • Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernández-Majada V, Grilli A, et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 2009; 106:6315 - 20; http://dx.doi.org/10.1073/pnas.0813221106; PMID: 19325125
  • Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, et al. Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 2002; 62:2744 - 8; PMID: 12019147
  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 2002; 22:1184 - 93; http://dx.doi.org/10.1128/MCB.22.4.1184-1193.2002; PMID: 11809809
  • Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103:311 - 20; http://dx.doi.org/10.1016/S0092-8674(00)00122-7; PMID: 11057903
  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997; 275:1787 - 90; http://dx.doi.org/10.1126/science.275.5307.1787; PMID: 9065402
  • Clevers H. Wnt breakers in colon cancer. Cancer Cell 2004; 5:5 - 6; http://dx.doi.org/10.1016/S1535-6108(03)00339-8; PMID: 14749120
  • Lepourcelet M, Chen Y-NP, France DS, Wang H, Crews P, Petersen F, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5:91 - 102; http://dx.doi.org/10.1016/S1535-6108(03)00334-9; PMID: 14749129
  • Curtin JC, Lorenzi MV. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 2010; 1:563 - 77; PMID: 21317452
  • Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, et al. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 2009; 1:25 - 37; PMID: 21188121
  • Hofseth LJ. singh UP, Singh NP, Nagarkatti M, Nagarkatti PS. Taming the beast within: resveratrol suppresses colitis and prevents colon cancer. Aging 2012; 2L:183 - 4
  • Dihlmann S, Siermann A, von Knebel Doeberitz M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene 2001; 20:645 - 53; http://dx.doi.org/10.1038/sj.onc.1204123; PMID: 11313997
  • Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342:1946 - 52; http://dx.doi.org/10.1056/NEJM200006293422603; PMID: 10874062
  • Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci USA 2008; 105:13544 - 9; http://dx.doi.org/10.1073/pnas.0800041105; PMID: 18768809
  • Sikandar S, Dizon D, Shen X, Li Z, Besterman J, Lipkin SM. The class I HDAC inhibitor MGCD0103 induces cell cycle arrest and apoptosis in colon cancer initiating cells by upregulating Dickkopf-1 and non-canonical Wnt signaling. Oncotarget 2010; 1:596 - 605; PMID: 21317455
  • Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol 2000; 228:151 - 65; http://dx.doi.org/10.1006/dbio.2000.9960; PMID: 11112321
  • Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593 - 612; http://dx.doi.org/10.1242/dev.063610; PMID: 21828089
  • Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 2008; 27:5099 - 109; http://dx.doi.org/10.1038/onc.2008.223; PMID: 18758478
  • Lai EC. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 2002; 3:840 - 5; http://dx.doi.org/10.1093/embo-reports/kvf170; PMID: 12223465
  • D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligands. Oncogene 2008; 27:5148 - 67; http://dx.doi.org/10.1038/onc.2008.229; PMID: 18758484
  • Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 2003; 4:786 - 97; PMID: 14570055
  • Stanley P. Regulation of Notch signaling by glycosylation. Curr Opin Struct Biol 2007; 17:530 - 5; http://dx.doi.org/10.1016/j.sbi.2007.09.007; PMID: 17964136
  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66:649 - 61; http://dx.doi.org/10.1016/0092-8674(91)90111-B; PMID: 1831692
  • Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183:2283 - 91; http://dx.doi.org/10.1084/jem.183.5.2283; PMID: 8642337
  • Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306:269 - 71; http://dx.doi.org/10.1126/science.1102160; PMID: 15472075
  • Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 2011; 473:230 - 3; http://dx.doi.org/10.1038/nature09999; PMID: 21562564
  • Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC, et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 2005; 106:3898 - 906; http://dx.doi.org/10.1182/blood-2005-01-0355; PMID: 16118316
  • Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 2011; 11:338 - 51; http://dx.doi.org/10.1038/nrc3035; PMID: 21508972
  • Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L, et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 2011; 105:796 - 806; http://dx.doi.org/10.1038/bjc.2011.321; PMID: 21847123
  • Hao L, Rizzo P, Osipo C, Pannuti A, Wyatt D, Cheung LW, et al. Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. Oncogene 2010; 29:201 - 13; http://dx.doi.org/10.1038/onc.2009.323; PMID: 19838210
  • Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333:1157 - 60; http://dx.doi.org/10.1126/science.1208130; PMID: 21798893
  • Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011; 333:1154 - 7; http://dx.doi.org/10.1126/science.1206923; PMID: 21798897
  • Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci USA 2011; 108:17761 - 6; http://dx.doi.org/10.1073/pnas.1114669108; PMID: 22006338
  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33:416 - 21; http://dx.doi.org/10.1038/ng1099; PMID: 12590261
  • Mandinova A, Lefort K, Tommasi di Vignano A, Stonely W, Ostano P, Chiorino G, et al. The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J 2008; 27:1243 - 54; http://dx.doi.org/10.1038/emboj.2008.45; PMID: 18388864
  • Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 2008; 9:377 - 83; http://dx.doi.org/10.1038/embor.2008.7; PMID: 18274550
  • Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194:237 - 55; http://dx.doi.org/10.1002/jcp.10208; PMID: 12548545
  • Fre S, Bardin A, Robine S, Louvard D. Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Exp Cell Res 2011; 317:2740 - 7; http://dx.doi.org/10.1016/j.yexcr.2011.06.012; PMID: 21745469
  • Vooijs M, Liu Z, Kopan R. Notch: architect, landscaper, and guardian of the intestine. Gastroenterology 2011; 141:448 - 59; http://dx.doi.org/10.1053/j.gastro.2011.06.003; PMID: 21689653
  • Miyamoto S, Rosenberg DW. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci 2011; 102:1938 - 42; http://dx.doi.org/10.1111/j.1349-7006.2011.02049.x; PMID: 21801279
  • Meng RD, Shelton CC, Li Y-M, Qin L-X, Notterman D, Paty PB, et al. γ-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009; 69:573 - 82; http://dx.doi.org/10.1158/0008-5472.CAN-08-2088; PMID: 19147571
  • Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, et al. Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 2008; 33:1223 - 9; PMID: 19020755
  • Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, et al. A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer 2012; 48:997 - 1003; http://dx.doi.org/10.1016/j.ejca.2012.02.056; PMID: 22445247
  • Arcaroli JJ, Powell RW, Varella-Garcia M, McManus M, Tan AC, Quackenbush KS, et al. ALDH+ tumor-initiating cells exhibiting gain in NOTCH1 gene copy number have enhanced regrowth sensitivity to a γ-secretase inhibitor and irinotecan in colorectal cancer. Mol Oncol 2012; 6:370 - 81; http://dx.doi.org/10.1016/j.molonc.2012.03.004; PMID: 22521243
  • Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67:753 - 91; http://dx.doi.org/10.1146/annurev.biochem.67.1.753; PMID: 9759503
  • Schmierer B, Hill CS. TGFB-SMAD signal transduction: molecular specificity and functional flexibility. Mol Cell Biol 2007; 8:970 - 82
  • Kodach LL, Wiercinska E, de Miranda NF, Bleuming SA, Musler AR, Peppelenbosch MP, et al. The bone morphogenetic protein pathway is inactivated in the majority of sporadic colorectal cancers. Gastroenterology 2008; 134:1332 - 41; http://dx.doi.org/10.1053/j.gastro.2008.02.059; PMID: 18471510
  • Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999; 59:320 - 4; PMID: 9927040
  • Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999; 18:3098 - 103; http://dx.doi.org/10.1038/sj.onc.1202642; PMID: 10340381
  • Reinacher-Schick A, Baldus SE, Romdhana B, Landsberg S, Zapatka M, Mönig SP, et al. Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 2004; 202:412 - 20; http://dx.doi.org/10.1002/path.1516; PMID: 15095268
  • Freeman TJ, Smith JJ, Chen X, Washington MK, Roland JT, Means AL, et al. Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin. Gastroenterology 2012; 142:562 - 71, e2; http://dx.doi.org/10.1053/j.gastro.2011.11.026; PMID: 22115830
  • Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Järvinen H, Mecklin JP, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 2005; 11:2606 - 11; http://dx.doi.org/10.1158/1078-0432.CCR-04-1458; PMID: 15814640
  • Lorente-Trigos A, Varnat F, Melotti A, Ruiz i Altaba A. BMP signaling promotes the growth of primary human colon carcinomas in vivo. J Mol Cell Biol 2010; 2:318 - 32; http://dx.doi.org/10.1093/jmcb/mjq035; PMID: 21098050
  • Theunissen J-W, de Sauvage FJ. Paracrine Hedgehog signaling in cancer. Cancer Res 2009; 69:6007 - 10; http://dx.doi.org/10.1158/0008-5472.CAN-09-0756; PMID: 19638582
  • Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001; 411:349 - 54; http://dx.doi.org/10.1038/35077219; PMID: 11357142
  • Katoh Y, Katoh M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review). [review] Int J Mol Med 2006; 18:1019 - 23; PMID: 17089004
  • Weiss GJ, Korn RL. Metastatic basal cell carcinoma in the era of hedgehog signaling pathway inhibitors. [Epub ahead of print] Cancer 2012; http://dx.doi.org/10.1002/cncr.27532; PMID: 22511370
  • Tang JY, Mackay-Wiggan JM, Aszterbaum M, Yauch RL, Lindgren J, Chang K, et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med 2012; 366:2180 - 8; http://dx.doi.org/10.1056/NEJMoa1113538; PMID: 22670904
  • Varnat F, Zacchetti G, Ruiz i Altaba A. Hedgehog pathway activity is required for the lethality and intestinal phenotypes of mice with hyperactive Wnt signaling. Mech Dev 2010; 127:73 - 81; http://dx.doi.org/10.1016/j.mod.2009.10.005; PMID: 19861162
  • Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 1996; 271:1826 - 32; http://dx.doi.org/10.1126/science.271.5257.1826; PMID: 8596950
  • Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Martí E. Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 2008; 135:237 - 47; http://dx.doi.org/10.1242/dev.012054; PMID: 18057099
  • Watt FM. Unexpected Hedgehog-Wnt interactions in epithelial differentiation. Trends Mol Med 2004; 10:577 - 80; http://dx.doi.org/10.1016/j.molmed.2004.10.008; PMID: 15567325
  • van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 2004; 36:277 - 82; http://dx.doi.org/10.1038/ng1304; PMID: 14770182
  • Estrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM. Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133:4427 - 38; http://dx.doi.org/10.1242/dev.02644; PMID: 17035290
  • Chen X, Stoeck A, Lee SJ, Shih IeM, Wang MM, Wang T-L. Jagged1 expression regulated by Notch3 and Wnt/β-catenin signaling pathways in ovarian cancer. Oncotarget 2010; 1:210 - 8; PMID: 20953350
  • Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol 2009; 184:101 - 12; http://dx.doi.org/10.1083/jcb.200805155; PMID: 19124651
  • Sang L, Roberts JM, Coller HA. Hijacking HES1: how tumors co-opt the anti-differentiation strategies of quiescent cells. Trends Mol Med 2010; 16:17 - 26; http://dx.doi.org/10.1016/j.molmed.2009.11.001; PMID: 20022559
  • Wall DS, Wallace VA. Hedgehog to Hes1: the heist of a Notch target. Cell Cycle 2009; 8:1301 - 2; http://dx.doi.org/10.4161/cc.8.9.8284; PMID: 19342879
  • Tian Q, He X-C, Hood L, Li L. Bridging the BMP and Wnt pathways by PI3 kinase/Akt and 14-3-3ζ. Cell Cycle 2005; 4:215 - 6; http://dx.doi.org/10.4161/cc.4.2.1412; PMID: 15655376
  • Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 2010; 9:2363 - 74; http://dx.doi.org/10.4161/cc.9.12.12050; PMID: 20519943
  • van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435:959 - 63; http://dx.doi.org/10.1038/nature03659; PMID: 15959515
  • Kwon C, Cheng P, King IN, Andersen P, Shenje L, Nigam V, et al. Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat Cell Biol 2011; 13:1244 - 51; http://dx.doi.org/10.1038/ncb2313; PMID: 21841793
  • Ruiz i Altaba A. Hedgehog signaling and the Gli code in stem cells, cancer, and metastases. Sci Signal 2011; 4:pt9; http://dx.doi.org/10.1126/scisignal.2002540; PMID: 22114144
  • Beck SE, Carethers JM. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther 2007; 6:1313 - 7; PMID: 18059158
  • Beck SE, Jung BH, Del Rosario E, Gomez J, Carethers JM. BMP-induced growth suppression in colon cancer cells is mediated by p21WAF1 stabilization and modulated by RAS/ERK. Cell Signal 2007; 19:1465 - 72; http://dx.doi.org/10.1016/j.cellsig.2007.01.017; PMID: 17317101
  • Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2:135 - 64; PMID: 21411864
  • Jeong WJ, Yoon J, Park JC, Lee SH, Lee SH, Kaduwal S, et al. Ras stabilization through aberrant activation of Wnt/β-catenin signaling promotes intestinal tumorigenesis. Sci Signal 2012; 5:1 - 12; http://dx.doi.org/10.1126/scisignal.2002242; PMID: 22234611
  • Pacheco-Pinedo EC, Morrisey EE. Wnt and Kras signaling-dark siblings in lung cancer. Oncotarget 2011; 569-74.
  • Mazumdar T, DeVecchio J, Agyeman A, Shi T, Houghton JA. The GLI genes are the molecular switch in disrupting Hedgehog signaling in colon cancer. Oncotarget 2011; 638-45.
  • Chen X, Liao J, Lu Y, Duan X, Sun W. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1. Pathol Oncol Res 2011; 17:257 - 61; http://dx.doi.org/10.1007/s12253-010-9307-1; PMID: 20848249
  • Hart LS, Dolloff NG, Dicker DT, Koumenis C, Christensen JG, Grimberg A, et al. Human colon cancer stem cells are enriched by insulin-like growth factor-1 and are sensitive to figitumumab. Cell Cycle 2011; 10:2331 - 8; http://dx.doi.org/10.4161/cc.10.14.16418; PMID: 21720213
  • Ho L, Alman B. Protecting the hedgerow: p53 and hedgehog pathway interactions. Cell Cycle 2010; 9:506 - 11; http://dx.doi.org/10.4161/cc.9.3.10552; PMID: 20081367
  • Efstratiadis A, Szabolcs M, Klinakis A. Notch, Myc and breast cancer. Cell Cycle 2007; 6:418 - 29; http://dx.doi.org/10.4161/cc.6.4.3838; PMID: 17329972
  • Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. [Epub ahead of print] Clin Cancer Res 2012; http://dx.doi.org/10.1158/1078-0432.CCR-12-0372; PMID: 22825584
  • Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 2012; 148:886 - 95; http://dx.doi.org/10.1016/j.cell.2012.02.025; PMID: 22385958
  • Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012; 148:873 - 85; http://dx.doi.org/10.1016/j.cell.2012.02.028; PMID: 22385957
  • Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487:330 - 7; http://dx.doi.org/10.1038/nature11252; PMID: 22810696
  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366:883 - 92; http://dx.doi.org/10.1056/NEJMoa1113205; PMID: 22397650

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.