1,247
Views
29
CrossRef citations to date
0
Altmetric
Report

Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics

, , , , , , & show all
Pages 1211-1224 | Received 31 Oct 2012, Accepted 14 Mar 2013, Published online: 21 Mar 2013

References

  • Espinosa JM. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 2008; 27:4013 - 23; http://dx.doi.org/10.1038/onc.2008.37; PMID: 18278067
  • Pan Y, Tsai C-J, Ma B, Nussinov R. Mechanisms of transcription factor selectivity. Trends Genet 2010; 26:75 - 83; http://dx.doi.org/10.1016/j.tig.2009.12.003; PMID: 20074831
  • Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4:793 - 805; http://dx.doi.org/10.1038/nrc1455; PMID: 15510160
  • Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9:749 - 58; http://dx.doi.org/10.1038/nrc2723; PMID: 19776744
  • Menendez D, Inga A, Resnick MA. Potentiating the p53 network. Discov Med 2010; 10:94 - 100; PMID: 20670604
  • Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell 2009; 137:413 - 31; http://dx.doi.org/10.1016/j.cell.2009.04.037; PMID: 19410540
  • Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer 2009; 9:691 - 700; http://dx.doi.org/10.1038/nrc2715; PMID: 19759539
  • Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, et al. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 2006; 58:773 - 81; http://dx.doi.org/10.1124/pr.58.4.8; PMID: 17132854
  • Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest 2006; 116:561 - 70; http://dx.doi.org/10.1172/JCI27987; PMID: 16511588
  • Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007; 87:905 - 31; http://dx.doi.org/10.1152/physrev.00026.2006; PMID: 17615392
  • Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, et al. Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proc Natl Acad Sci USA 2010; 107:15081 - 6; http://dx.doi.org/10.1073/pnas.1009575107; PMID: 20696891
  • Liu W, Ip MM, Podgorsak MB, Das GM. Disruption of estrogen receptor α-p53 interaction in breast tumors: a novel mechanism underlying the anti-tumor effect of radiation therapy. Breast Cancer Res Treat 2009; 115:43 - 50; http://dx.doi.org/10.1007/s10549-008-0044-z; PMID: 18481172
  • Liu W, Konduri SD, Bansal S, Nayak BK, Rajasekaran SA, Karuppayil SM, et al. Estrogen receptor-α binds p53 tumor suppressor protein directly and represses its function. J Biol Chem 2006; 281:9837 - 40; http://dx.doi.org/10.1074/jbc.C600001200; PMID: 16469747
  • Sayeed A, Konduri SD, Liu W, Bansal S, Li F, Das GM. Estrogen receptor α inhibits p53-mediated transcriptional repression: implications for the regulation of apoptosis. Cancer Res 2007; 67:7746 - 55; http://dx.doi.org/10.1158/0008-5472.CAN-06-3724; PMID: 17699779
  • Liu G, Schwartz JA, Brooks SC. p53 down-regulates ER-responsive genes by interfering with the binding of ER to ERE. Biochem Biophys Res Commun 1999; 264:359 - 64; http://dx.doi.org/10.1006/bbrc.1999.1525; PMID: 10529369
  • Yu C-L, Driggers P, Barrera-Hernandez G, Nunez SB, Segars JH, Cheng S-y. The tumor suppressor p53 is a negative regulator of estrogen receptor signaling pathways. Biochem Biophys Res Commun 1997; 239:617 - 20; http://dx.doi.org/10.1006/bbrc.1997.7522; PMID: 9344880
  • Fernández-Cuesta L, Anaganti S, Hainaut P, Olivier M. Estrogen levels act as a rheostat on p53 levels and modulate p53-dependent responses in breast cancer cell lines. Breast Cancer Res Treat 2011; 125:35 - 42; http://dx.doi.org/10.1007/s10549-010-0819-x; PMID: 20221692
  • Angeloni SV, Martin MB, Garcia-Morales P, Castro-Galache MD, Ferragut JA, Saceda M. Regulation of estrogen receptor-alpha expression by the tumor suppressor gene p53 in MCF-7 cells. J Endocrinol 2004; 180:497 - 504; http://dx.doi.org/10.1677/joe.0.1800497; PMID: 15012604
  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005; 102:13550 - 5; http://dx.doi.org/10.1073/pnas.0506230102; PMID: 16141321
  • Olivier M, Langerød A, Carrieri P, Bergh J, Klaar S, Eyfjord J, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 2006; 12:1157 - 67; http://dx.doi.org/10.1158/1078-0432.CCR-05-1029; PMID: 16489069
  • Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H, et al. Differential regulation of estrogen receptor α turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 2007; 67:5513 - 21; http://dx.doi.org/10.1158/0008-5472.CAN-07-0967; PMID: 17545634
  • Kim K, Burghardt R, Barhoumi R, Lee SO, Liu X, Safe S. MDM2 regulates estrogen receptor α and estrogen responsiveness in breast cancer cells. J Mol Endocrinol 2011; 46:67 - 79; PMID: 21169420
  • Ciribilli Y, Andreotti V, Menendez D, Langen J-S, Schoenfelder G, Resnick MA, et al. The coordinated p53 and estrogen receptor cis-regulation at an FLT1 promoter SNP is specific to genotoxic stress and estrogenic compound. PLoS ONE 2010; 5:e10236; http://dx.doi.org/10.1371/journal.pone.0010236; PMID: 20422012
  • Menendez D, Inga A, Snipe J, Krysiak O, Schönfelder G, Resnick MA. A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol Cell Biol 2007; 27:2590 - 600; http://dx.doi.org/10.1128/MCB.01742-06; PMID: 17242190
  • Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer 2009; 9:724 - 37; http://dx.doi.org/10.1038/nrc2730; PMID: 19776742
  • Menendez D, Inga A, Resnick MA. Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences. Proc Natl Acad Sci USA 2010; 107:1500 - 5; http://dx.doi.org/10.1073/pnas.0909129107; PMID: 20080630
  • Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schönfelder G. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci USA 2006; 103:1406 - 11; http://dx.doi.org/10.1073/pnas.0508103103; PMID: 16432214
  • Carroll JS, Brown M. Estrogen receptor target gene: an evolving concept. Mol Endocrinol 2006; 20:1707 - 14; http://dx.doi.org/10.1210/me.2005-0334; PMID: 16396959
  • Gruber CJ, Gruber DM, Gruber IML, Wieser F, Huber JC. Anatomy of the estrogen response element. Trends in Endocrinology &amp. Metabolism 2004; 15:73 - 8
  • Joshi SR, Ghattamaneni RB, Scovell WM. Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol Endocrinol 2011; 25:980 - 94; http://dx.doi.org/10.1210/me.2010-0302; PMID: 21527498
  • Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol 2011; 8:25 - 37; http://dx.doi.org/10.1038/nrclinonc.2010.174; PMID: 20975744
  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008; 4:44 - 57; http://dx.doi.org/10.1038/nprot.2008.211
  • Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, et al. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res 2010; 38:Database issue D552 - 6; http://dx.doi.org/10.1093/nar/gkp937; PMID: 19897548
  • Jin YJ, Wang J, Qiao C, Hei TK, Brandt-Rauf PW, Yin Y. A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis. Mol Cancer Res 2006; 4:769 - 78; http://dx.doi.org/10.1158/1541-7786.MCR-06-0178; PMID: 17050670
  • Menendez D, Shatz M, Azzam K, Garantziotis S, Fessler MB, Resnick MA. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet 2011; 7:e1001360; http://dx.doi.org/10.1371/journal.pgen.1001360; PMID: 21483755
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296:550 - 3; http://dx.doi.org/10.1126/science.1068999; PMID: 11910072
  • Subik K, Lee J-F, Baxter L, Strzepek T, Costello D, Crowley P, et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer (Auckl) 2010; 4:35 - 41; PMID: 20697531
  • Munster PN, Carpenter JT. Estradiol in breast cancer treatment: reviving the past. JAMA 2009; 302:797 - 8; http://dx.doi.org/10.1001/jama.2009.1223; PMID: 19690316
  • Azmi AS, Banerjee S, Ali S, Wang Z, Bao B, Beck FW, et al. Network modeling of MDM2 inhibitor-oxaliplatin combination reveals biological synergy in wt-p53 solid tumors. Oncotarget 2011; 2:378 - 92; PMID: 21623005
  • Deng XS, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, et al. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 2012; 11:367 - 76; http://dx.doi.org/10.4161/cc.11.2.18813; PMID: 22189713
  • Jiang Z, Jones R, Liu JC, Deng T, Robinson T, Chung PE, et al. RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle 2011; 10:1563 - 70; http://dx.doi.org/10.4161/cc.10.10.15703; PMID: 21502814
  • Troester MA, Hoadley KA, Parker JS, Perou CM. Prediction of toxicant-specific gene expression signatures after chemotherapeutic treatment of breast cell lines. Environ Health Perspect 2004; 112:1607 - 13; http://dx.doi.org/10.1289/ehp.7204; PMID: 15598611
  • Liu Q, Dumont DJ. Molecular cloning and chromosomal localization in human and mouse of the SH2-containing inositol phosphatase, INPP5D (SHIP). Amgen EST Program. Genomics 1997; 39:109 - 12; http://dx.doi.org/10.1006/geno.1996.4374; PMID: 9027494
  • Kerley-Hamilton JS, Pike AM, Li N, DiRenzo J, Spinella MJ. A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embryonal carcinoma. Oncogene 2005; 24:6090 - 100; http://dx.doi.org/10.1038/sj.onc.1208755; PMID: 15940259
  • Badock V, Steinhusen U, Bommert K, Wittmann-Liebold B, Otto A. Apoptosis-induced cleavage of keratin 15 and keratin 17 in a human breast epithelial cell line. Cell Death Differ 2001; 8:308 - 15; http://dx.doi.org/10.1038/sj.cdd.4400812; PMID: 11319614
  • Bailey ST, Shin H, Westerling T, Liu XS, Brown M. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci USA 2012; 109:18060 - 5; http://dx.doi.org/10.1073/pnas.1018858109; PMID: 23077249
  • Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13:297 - 311; PMID: 22473470
  • Mund A, Schubert T, Staege H, Kinkley S, Reumann K, Kriegs M, et al. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response. Nucleic Acids Res 2012; 40:11363 - 79; http://dx.doi.org/10.1093/nar/gks868; PMID: 23034801
  • Sulli G, Di Micco R, d’Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 2012; 12:709 - 20; http://dx.doi.org/10.1038/nrc3344; PMID: 22952011
  • Lee DY, Northrop JP, Kuo MH, Stallcup MR. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem 2006; 281:8476 - 85; http://dx.doi.org/10.1074/jbc.M511093200; PMID: 16461774
  • An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 2004; 117:735 - 48; http://dx.doi.org/10.1016/j.cell.2004.05.009; PMID: 15186775
  • Cloos PA, Christensen J, Agger K, Helin K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 2008; 22:1115 - 40; http://dx.doi.org/10.1101/gad.1652908; PMID: 18451103
  • Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 2007; 128:505 - 18; http://dx.doi.org/10.1016/j.cell.2006.12.038; PMID: 17289570
  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, et al. p53 is regulated by the lysine demethylase LSD1. Nature 2007; 449:105 - 8; http://dx.doi.org/10.1038/nature06092; PMID: 17805299
  • Tsai WW, Nguyen TT, Shi Y, Barton MC. p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Mol Cell Biol 2008; 28:5139 - 46; http://dx.doi.org/10.1128/MCB.00287-08; PMID: 18573881
  • Espinosa JM, Emerson BM. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 2001; 8:57 - 69; http://dx.doi.org/10.1016/S1097-2765(01)00283-0; PMID: 11511360
  • Hanstein B, Eckner R, DiRenzo J, Halachmi S, Liu H, Searcy B, et al. p300 is a component of an estrogen receptor coactivator complex. Proc Natl Acad Sci USA 1996; 93:11540 - 5; http://dx.doi.org/10.1073/pnas.93.21.11540; PMID: 8876171
  • Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 2010; 17:901 - 11; http://dx.doi.org/10.1038/cdd.2010.35; PMID: 20379196
  • Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 2010; 17:982 - 9; http://dx.doi.org/10.1038/nsmb.1872; PMID: 20639885
  • Berteaux N, Lottin S, Monté D, Pinte S, Quatannens B, Coll J, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 2005; 280:29625 - 36; http://dx.doi.org/10.1074/jbc.M504033200; PMID: 15985428
  • Wang J, Fu L, Gu F, Ma Y. Notch1 is involved in migration and invasion of human breast cancer cells. Oncol Rep 2011; 26:1295 - 303; PMID: 21785827
  • Noetzel E, Rose M, Sevinc E, Hilgers RD, Hartmann A, Naami A, et al. Intermediate filament dynamics and breast cancer: aberrant promoter methylation of the Synemin gene is associated with early tumor relapse. Oncogene 2010; 29:4814 - 25; http://dx.doi.org/10.1038/onc.2010.229; PMID: 20543860
  • Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 2011; 71:2466 - 75; http://dx.doi.org/10.1158/0008-5472.CAN-10-1993; PMID: 21427357
  • Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005; 17:499 - 508; http://dx.doi.org/10.1016/j.ceb.2005.08.014; PMID: 16107313
  • Udayakumar D, Zhang G, Ji Z, Njauw CN, Mroz P, Tsao H. EphA2 is a critical oncogene in melanoma. Oncogene 2011; 30:4921 - 9; http://dx.doi.org/10.1038/onc.2011.210; PMID: 21666714
  • Zhang G, Njauw C-N, Park JM, Naruse C, Asano M, Tsao H. EphA2 is an essential mediator of UV radiation-induced apoptosis. Cancer Res 2008; 68:1691 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-07-2372; PMID: 18339848
  • Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell 2002; 108:165 - 70; http://dx.doi.org/10.1016/S0092-8674(02)00626-8; PMID: 11832207
  • Luo JM, Liu ZL, Hao HL, Wang FX, Dong ZR, Ohno R. Mutation analysis of SHIP gene in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2004; 12:420 - 6; PMID: 15363123
  • Zhou M-N, Kunttas-Tatli E, Zimmerman S, Zhouzheng F, McCartney BM. Cortical localization of APC2 plays a role in actin organization but not in Wnt signaling in Drosophila. J Cell Sci 2011; 124:1589 - 600; http://dx.doi.org/10.1242/jcs.073916; PMID: 21486956
  • Shetty PJ, Movva S, Pasupuleti N, Vedicherlla B, Vattam KK, Venkatasubramanian S, et al. Regulation of IGF2 transcript and protein expression by altered methylation in breast cancer. J Cancer Res Clin Oncol 2011; 137:339 - 45; http://dx.doi.org/10.1007/s00432-010-0890-z; PMID: 20422427
  • Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010; 28:1248 - 50; http://dx.doi.org/10.1038/nbt1210-1248; PMID: 21139605
  • Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 2004; 573:83 - 92; http://dx.doi.org/10.1016/j.febslet.2004.07.055; PMID: 15327980
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3:research0034.1 - research.11; H0034 http://dx.doi.org/10.1186/gb-2002-3-7-research0034; PMID: 12184808
  • Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, et al. RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 2011; 39:suppl W86 - 91; http://dx.doi.org/10.1093/nar/gkr377; PMID: 21715389

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.