1,023
Views
27
CrossRef citations to date
0
Altmetric
Report

In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals

, , , , , , , , & show all
Pages 2395-2408 | Received 21 Mar 2013, Accepted 13 Jun 2013, Published online: 26 Jun 2013

References

  • Alldridge L, Metodieva G, Greenwood C, Al-Janabi K, Thwaites L, Sauven P, et al. Proteome profiling of breast tumors by gel electrophoresis and nanoscale electrospray ionization mass spectrometry. J Proteome Res 2008; 7:1458 - 69; http://dx.doi.org/10.1021/pr7007829; PMID: 18257521
  • Ye F, Zhou C, Cheng Q, Shen J, Chen H. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer 2008; 8:108; http://dx.doi.org/10.1186/1471-2407-8-108; PMID: 18419830
  • Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 2008; 14:4085 - 95; http://dx.doi.org/10.1158/1078-0432.CCR-07-4404; PMID: 18593985
  • Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 2008; 22:3696 - 705; http://dx.doi.org/10.1096/fj.08-102590; PMID: 18614581
  • Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68:4311 - 20; http://dx.doi.org/10.1158/0008-5472.CAN-08-0364; PMID: 18519691
  • Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL. Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 2008; 68:6281 - 91; http://dx.doi.org/10.1158/0008-5472.CAN-08-0094; PMID: 18676852
  • Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S. Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 2008; 68:6533 - 40; http://dx.doi.org/10.1158/0008-5472.CAN-07-6642; PMID: 18701476
  • Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 2008; 283:17635 - 51; http://dx.doi.org/10.1074/jbc.M800109200; PMID: 18441325
  • Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27:993 - 1005; http://dx.doi.org/10.1002/stem.29; PMID: 19415763
  • Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ, et al. Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 2010; 9; PMID: 20026903
  • Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK. CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 2010; 70:4624 - 33; http://dx.doi.org/10.1158/0008-5472.CAN-09-3619; PMID: 20484027
  • Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010; 70:10433 - 44; http://dx.doi.org/10.1158/0008-5472.CAN-10-2638; PMID: 21159654
  • Po A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G, et al. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J 2010; 29:2646 - 58; http://dx.doi.org/10.1038/emboj.2010.131; PMID: 20581804
  • Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i Altaba A. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 2010; 29:2659 - 74; http://dx.doi.org/10.1038/emboj.2010.137; PMID: 20581802
  • Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011; 30:3833 - 45; http://dx.doi.org/10.1038/onc.2011.114; PMID: 21499299
  • Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 2011; 71:4640 - 52; http://dx.doi.org/10.1158/0008-5472.CAN-10-3320; PMID: 21712410
  • Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 2011; 9:50 - 63; http://dx.doi.org/10.1016/j.stem.2011.06.005; PMID: 21726833
  • Noh KH, Lee YH, Jeon JH, Kang TH, Mao CP, Wu TC, et al. Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immune-resistant and stem-like phenotype. Cancer Res 2012; 72:1717 - 27; http://dx.doi.org/10.1158/0008-5472.CAN-11-3758; PMID: 22337995
  • Ho B, Olson G, Figel S, Gelman I, Cance WG, Golubovskaya VM. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J Biol Chem 2012; 287:18656 - 73; http://dx.doi.org/10.1074/jbc.M111.322883; PMID: 22493428
  • Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 2012; 56:1004 - 14; http://dx.doi.org/10.1002/hep.25745; PMID: 22473773
  • Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 2012; 30:2076 - 87; http://dx.doi.org/10.1002/stem.1182; PMID: 22851508
  • Noh KH, Kim BW, Song KH, Cho H, Lee YH, Kim JH, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 2012; 122:4077 - 93; http://dx.doi.org/10.1172/JCI64057; PMID: 23093782
  • Siu MK, Wong ES, Kong DS, Chan HY, Jiang L, Wong OG, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 2012; http://dx.doi.org/10.1038/onc.2012.363; PMID: 22945654
  • Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M, et al. NANOG modulates stemness in human colorectal cancer. Oncogene 2012; http://dx.doi.org/10.1038/onc.2012.461; PMID: 23085761
  • Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 2012; 10:556 - 69; http://dx.doi.org/10.1016/j.stem.2012.03.009; PMID: 22560078
  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121:465 - 77; http://dx.doi.org/10.1016/j.cell.2005.02.018; PMID: 15882627
  • Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 2010; 5:e11022; http://dx.doi.org/10.1371/journal.pone.0011022; PMID: 20548776
  • Xian W, Rosenberg MP, DiGiovanni J. Activation of erbB2 and c-src in phorbol ester-treated mouse epidermis: possible role in mouse skin tumor promotion. Oncogene 1997; 14:1435 - 44; http://dx.doi.org/10.1038/sj.onc.1200980; PMID: 9136987
  • Chen X, Schneider-Broussard R, Hollowell D, McArthur M, Jeter CR, Benavides F, et al. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice. Differentiation 2009; 77:324 - 34; http://dx.doi.org/10.1016/j.diff.2008.10.011; PMID: 19272531
  • Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 2009; 106:12771 - 5; http://dx.doi.org/10.1073/pnas.0906850106; PMID: 19625615
  • Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 2009; 4:1350 - 62; http://dx.doi.org/10.1038/nprot.2009.120; PMID: 19713956
  • Argyris T. Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am J Pathol 1976; 83:329 - 40; PMID: 1266945
  • Langton AK, Herrick SE, Headon DJ. An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 2008; 128:1311 - 8; http://dx.doi.org/10.1038/sj.jid.5701178; PMID: 18037901
  • Morris RJ, Tryson KA, Wu KQ. Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis of infundibulum as well as in the hair follicles. Cancer Res 2000; 60:226 - 9; PMID: 10667563
  • Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 2001; 28:165 - 8; http://dx.doi.org/10.1038/88889; PMID: 11381265
  • Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4:427 - 39; http://dx.doi.org/10.1016/j.stem.2009.04.014; PMID: 19427292
  • Mathur D, Danford TW, Boyer LA, Young RA, Gifford DK, Jaenisch R. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol 2008; 9:R126; http://dx.doi.org/10.1186/gb-2008-9-8-r126; PMID: 18700969
  • Sharov AA, Masui S, Sharova LV, Piao Y, Aiba K, Matoba R, et al. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics 2008; 9:269; http://dx.doi.org/10.1186/1471-2164-9-269; PMID: 18522731
  • Kangsamaksin T, Morris RJ. Bone morphogenetic protein 5 regulates the number of keratinocyte stem cells from the skin of mice. J Invest Dermatol 2011; 131:580 - 5; http://dx.doi.org/10.1038/jid.2010.378; PMID: 21179110
  • Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol 2001; 11:558 - 68; http://dx.doi.org/10.1016/S0960-9822(01)00154-3; PMID: 11369200
  • Miyanari Y, Torres-Padilla ME. Control of ground-state pluripotency by allelic regulation of Nanog.. Nature 2012; 483:470 - 3; http://dx.doi.org/10.1038/nature10807; PMID: 22327294
  • Singh AM, Hamazaki T, Hankowski KE, Terada N. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 2007; 25:2534 - 42; http://dx.doi.org/10.1634/stemcells.2007-0126; PMID: 17615266
  • Glauche I, Herberg M, Roeder I. Nanog variability and pluripotency regulation of embryonic stem cells--insights from a mathematical model analysis. PLoS One 2010; 5:e11238; http://dx.doi.org/10.1371/journal.pone.0011238; PMID: 20574542
  • Machida K, Tsukamoto H, Mkrtchyan H, Duan L, Dynnyk A, Liu HM, et al. Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci U S A 2009; 106:1548 - 53; http://dx.doi.org/10.1073/pnas.0807390106; PMID: 19171902
  • Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 2008; 3:33 - 43; http://dx.doi.org/10.1016/j.stem.2008.05.009; PMID: 18593557
  • Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 327:1385 - 9; http://dx.doi.org/10.1126/science.1184733; PMID: 20223988
  • Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 2003; 120:501 - 11; http://dx.doi.org/10.1046/j.1523-1747.2003.12088.x; PMID: 12648211
  • Trempus CS, Morris RJ, Ehinger M, Elmore A, Bortner CD, Ito M, et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 2007; 67:4173 - 81; http://dx.doi.org/10.1158/0008-5472.CAN-06-3128; PMID: 17483328
  • Young MR, Li JJ, Rincón M, Flavell RA, Sathyanarayana BK, Hunziker R, et al. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc Natl Acad Sci U S A 1999; 96:9827 - 32; http://dx.doi.org/10.1073/pnas.96.17.9827; PMID: 10449779
  • Perego M, Tortoreto M, Tragni G, Mariani L, Deho P, Carbone A, et al. Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J Invest Dermatol 2010; 130:1877 - 86; http://dx.doi.org/10.1038/jid.2010.69; PMID: 20376064
  • Suraneni MV, Schneider-Broussard R, Moore JR, Davis TC, Maldonado CJ, Li H, et al. Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene 2010; 29:4261 - 75; http://dx.doi.org/10.1038/onc.2010.197; PMID: 20514017
  • Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 2000; 29:52 - 4, 54; PMID: 10907076
  • Jensen KB, Driskell RR, Watt FM. Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc 2010; 5:898 - 911; http://dx.doi.org/10.1038/nprot.2010.39; PMID: 20431535