607
Views
7
CrossRef citations to date
0
Altmetric
Report

Somatic inactivation of Tp53 in hematopoietic stem cells or thymocytes predisposes mice to thymic lymphomas with clonal translocations

, &
Pages 3307-3316 | Received 07 Aug 2013, Accepted 28 Aug 2013, Published online: 09 Sep 2013

References

  • Meek DW. Tumour suppression by p53: a role for the DNA damage response?. Nat Rev Cancer 2009; 9:714 - 23; PMID: 19730431
  • Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012; 28:128 - 36; http://dx.doi.org/10.1016/j.tig.2011.12.002; PMID: 22265392
  • Cheung KJ, Horsman DE, Gascoyne RD. The significance of TP53 in lymphoid malignancies: mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br J Haematol 2009; 146:257 - 69; http://dx.doi.org/10.1111/j.1365-2141.2009.07739.x; PMID: 19500100
  • Stilgenbauer S, Bullinger L, Lichter P, Döhner H, German CLL Study Group (GCLLSG). Chronic lymphocytic leukemia. Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia 2002; 16:993 - 1007; http://dx.doi.org/10.1038/sj.leu.2402537; PMID: 12040431
  • Bhatia KG, Gutiérrez MI, Huppi K, Siwarski D, Magrath IT. The pattern of p53 mutations in Burkitt’s lymphoma differs from that of solid tumors. Cancer Res 1992; 52:4273 - 6; PMID: 1638540
  • Hof J, Krentz S, van Schewick C, Körner G, Shalapour S, Rhein P, Karawajew L, Ludwig WD, Seeger K, Henze G, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 2011; 29:3185 - 93; http://dx.doi.org/10.1200/JCO.2011.34.8144; PMID: 21747090
  • Ramírez J, Lukin K, Hagman J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol 2010; 22:177 - 84; http://dx.doi.org/10.1016/j.coi.2010.02.003; PMID: 20207529
  • Chi AW, Bell JJ, Zlotoff DA, Bhandoola A. Untangling the T branch of the hematopoiesis tree. Curr Opin Immunol 2009; 21:121 - 6; http://dx.doi.org/10.1016/j.coi.2009.01.012; PMID: 19269149
  • Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011; 11:251 - 63; http://dx.doi.org/10.1038/nri2941; PMID: 21394103
  • Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 2013; 152:417 - 29; http://dx.doi.org/10.1016/j.cell.2013.01.007; PMID: 23374339
  • Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79:181 - 211; http://dx.doi.org/10.1146/annurev.biochem.052308.093131; PMID: 20192759
  • Krangel MS, Carabana J, Abbarategui I, Schlimgen R, Hawwari A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor alpha/delta locus. Immunol Rev 2004; 200:224 - 32; http://dx.doi.org/10.1111/j.0105-2896.2004.00155.x; PMID: 15242408
  • Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 2006; 24:541 - 70; http://dx.doi.org/10.1146/annurev.immunol.23.021704.115830; PMID: 16551259
  • Xiong N, Raulet DH. Development and selection of gammadelta T cells. Immunol Rev 2007; 215:15 - 31; http://dx.doi.org/10.1111/j.1600-065X.2006.00478.x; PMID: 17291276
  • Bell JJ, Bhandoola A. Putting ThPOK in place. Nat Immunol 2008; 9:1095 - 7; http://dx.doi.org/10.1038/ni1008-1095; PMID: 18800158
  • von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 2010; 11:14 - 20; http://dx.doi.org/10.1038/ni.1794; PMID: 20016505
  • Kuo TC, Schlissel MS. Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr Opin Immunol 2009; 21:173 - 8; http://dx.doi.org/10.1016/j.coi.2009.03.008; PMID: 19359154
  • Nemazee D. Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 2006; 6:728 - 40; http://dx.doi.org/10.1038/nri1939; PMID: 16998507
  • Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 2006; 18:164 - 74; http://dx.doi.org/10.1016/j.coi.2006.01.008; PMID: 16464563
  • Keim C, Kazadi D, Rothschild G, Basu U. Regulation of AID, the B-cell genome mutator. Genes Dev 2013; 27:1 - 17; http://dx.doi.org/10.1101/gad.200014.112; PMID: 23307864
  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt FW. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 2003; 114:359 - 70; http://dx.doi.org/10.1016/S0092-8674(03)00566-X; PMID: 12914700
  • Boboila C, Alt FW, Schwer B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 2012; 116:1 - 49; http://dx.doi.org/10.1016/B978-0-12-394300-2.00001-6; PMID: 23063072
  • Bassing CH, Alt FW. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 2004; 3:781 - 96; http://dx.doi.org/10.1016/j.dnarep.2004.06.001; PMID: 15279764
  • Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, Kern W, Haferlach T, Haferlach C. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23:117 - 24; http://dx.doi.org/10.1038/leu.2008.274; PMID: 18843282
  • Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 2010; 188:369 - 81; http://dx.doi.org/10.1083/jcb.200905057; PMID: 20123995
  • Fukasawa K, Wiener F, Vande Woude GF, Mai S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 1997; 15:1295 - 302; http://dx.doi.org/10.1038/sj.onc.1201482; PMID: 9315097
  • Dujka ME, Puebla-Osorio N, Tavana O, Sang M, Zhu C. ATM and p53 are essential in the cell-cycle containment of DNA breaks during V(D)J recombination in vivo. Oncogene 2010; 29:957 - 65; http://dx.doi.org/10.1038/onc.2009.394; PMID: 19915617
  • Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, Gao Y, Morton CC, Alt FW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 2002; 109:811 - 21; http://dx.doi.org/10.1016/S0092-8674(02)00770-5; PMID: 12110179
  • Nacht M, Strasser A, Chan YR, Harris AW, Schlissel M, Bronson RT, Jacks T. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev 1996; 10:2055 - 66; http://dx.doi.org/10.1101/gad.10.16.2055; PMID: 8769648
  • Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R, Ried T, Nussenzweig A. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002; 196:469 - 80; http://dx.doi.org/10.1084/jem.20020851; PMID: 12186839
  • Gladdy RA, Taylor MD, Williams CJ, Grandal I, Karaskova J, Squire JA, Rutka JT, Guidos CJ, Danska JS. The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell 2003; 3:37 - 50; http://dx.doi.org/10.1016/S1535-6108(02)00236-2; PMID: 12559174
  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356:215 - 21; http://dx.doi.org/10.1038/356215a0; PMID: 1552940
  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4:1 - 7; http://dx.doi.org/10.1016/S0960-9822(00)00002-6; PMID: 7922305
  • Liao MJ, Zhang XX, Hill R, Gao J, Qumsiyeh MB, Nichols W, Van Dyke T. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol 1998; 18:3495 - 501; PMID: 9584189
  • Jacobs C, Huang Y, Masud T, Lu W, Westfield G, Giblin W, Sekiguchi JM. A hypomorphic Artemis human disease allele causes aberrant chromosomal rearrangements and tumorigenesis. Hum Mol Genet 2011; 20:806 - 19; http://dx.doi.org/10.1093/hmg/ddq524; PMID: 21147755
  • Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114:371 - 83; http://dx.doi.org/10.1016/S0092-8674(03)00567-1; PMID: 12914701
  • Ward JM, Tadesse-Heath L, Perkins SN, Chattopadhyay SK, Hursting SD, Morse HC 3rd. Splenic marginal zone B-cell and thymic T-cell lymphomas in p53-deficient mice. Lab Invest 1999; 79:3 - 14; PMID: 9952106
  • Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 2000; 404:510 - 4; http://dx.doi.org/10.1038/35006670; PMID: 10761921
  • Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT, Danska JS. V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev 1996; 10:2038 - 54; http://dx.doi.org/10.1101/gad.10.16.2038; PMID: 8769647
  • Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C, Ferguson DO, Alt FW. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci U S A 2004; 101:2410 - 5; http://dx.doi.org/10.1073/pnas.0308757101; PMID: 14983023
  • Haines BB, Ryu CJ, Chang S, Protopopov A, Luch A, Kang YH, Draganov DD, Fragoso MF, Paik SG, Hong HJ, et al. Block of T cell development in P53-deficient mice accelerates development of lymphomas with characteristic RAG-dependent cytogenetic alterations. Cancer Cell 2006; 9:109 - 20; http://dx.doi.org/10.1016/j.ccr.2006.01.004; PMID: 16473278
  • Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med 2013; 368:842 - 51; http://dx.doi.org/10.1056/NEJMra1204892; PMID: 23445095
  • Yin B, Yang-Iott KS, Chao LH, Bassing CH. Cellular context-dependent effects of H2ax and p53 deletion on the development of thymic lymphoma. Blood 2011; 117:175 - 85; http://dx.doi.org/10.1182/blood-2010-03-273045; PMID: 20947684
  • Rowh MA, DeMicco A, Horowitz JE, Yin B, Yang-Iott KS, Fusello AM, Hobeika E, Reth M, Bassing CH. Tp53 deletion in B lineage cells predisposes mice to lymphomas with oncogenic translocations. Oncogene 2011; 30:4757 - 64; http://dx.doi.org/10.1038/onc.2011.191; PMID: 21625223
  • Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Pérez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 2001; 15:763 - 74; http://dx.doi.org/10.1016/S1074-7613(01)00227-8; PMID: 11728338
  • Georgiades P, Ogilvy S, Duval H, Licence DR, Charnock-Jones DS, Smith SK, Print CG. VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis 2002; 34:251 - 6; http://dx.doi.org/10.1002/gene.10161; PMID: 12434335
  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362:847 - 9; http://dx.doi.org/10.1038/362847a0; PMID: 8479522
  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29:418 - 25; http://dx.doi.org/10.1038/ng747; PMID: 11694875
  • Jiang D, Lenardo MJ, Zúñiga-Pflücker JC. p53 prevents maturation to the CD4+CD8+ stage of thymocyte differentiation in the absence of T cell receptor rearrangement. J Exp Med 1996; 183:1923 - 8; http://dx.doi.org/10.1084/jem.183.4.1923; PMID: 8666950
  • Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J, et al. Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 1996; 14:312 - 5; http://dx.doi.org/10.1038/ng1196-312; PMID: 8896561
  • Madapura HS, Salamon D, Wiman KG, Lain S, Klein G, Klein E, Nagy N. p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP. Cell Cycle 2012; 11:4563 - 9; http://dx.doi.org/10.4161/cc.22810; PMID: 23165210
  • Fiancette R, Rouaud P, Vincent-Fabert C, Laffleur B, Magnone V, Cogné M, Denizot Y. A p53 defect sensitizes various stages of B cell development to lymphomagenesis in mice carrying an IgH 3′ regulatory region-driven c-myc transgene. J Immunol 2011; 187:5772 - 82; http://dx.doi.org/10.4049/jimmunol.1102059; PMID: 22039300
  • Rouaud P, Fiancette R, Vincent-Fabert C, Magnone V, Cogné M, Dubus P, Denizot Y. Mantle cell lymphoma-like lymphomas in c-myc-3’RR/p53+/- mice and c-myc-3’RR/Cdk4R24C mice: differential oncogenic mechanisms but similar cellular origin. Oncotarget 2012; 3:586 - 93; PMID: 22592113
  • Vicente-Dueñas C, González-Herrero I, García Cenador MB, García Criado FJ, Sánchez-García I. Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB. Cell Cycle 2012; 11:3896 - 900; http://dx.doi.org/10.4161/cc.22186; PMID: 22983007
  • Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 2001; 98:9209 - 14; http://dx.doi.org/10.1073/pnas.161269798; PMID: 11481484
  • Silver DP, Livingston DM. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 2001; 8:233 - 43; http://dx.doi.org/10.1016/S1097-2765(01)00295-7; PMID: 11511376
  • Cheung AM, Hande MP, Jalali F, Tsao MS, Skinnider B, Hirao A, McPherson JP, Karaskova J, Suzuki A, Wakeham A, et al. Loss of Brca2 and p53 synergistically promotes genomic instability and deregulation of T-cell apoptosis. Cancer Res 2002; 62:6194 - 204; PMID: 12414647
  • Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, Smith FO, Reaman GH. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010; 28:2625 - 34; http://dx.doi.org/10.1200/JCO.2009.27.0421; PMID: 20404250
  • Maloney KW, Giller R, Hunger SP. Recent advances in the understanding and treatment of pediatric leukemias. Adv Pediatr 2012; 59:329 - 58; http://dx.doi.org/10.1016/j.yapd.2012.04.010; PMID: 22789585
  • Bhatia S. Long-term complications of therapeutic exposures in childhood: lessons learned from childhood cancer survivors. Pediatrics 2012; 130:1141 - 3; http://dx.doi.org/10.1542/peds.2012-2884; PMID: 23166341
  • Mrózek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. [v.] Hematol Oncol Clin North Am 2009; 23:991 - 1010, v; http://dx.doi.org/10.1016/j.hoc.2009.07.001; PMID: 19825449
  • Le Noir S, Ben Abdelali R, Lelorch M, Bergeron J, Sungalee S, Payet-Bornet D, Villarèse P, Petit A, Callens C, Lhermitte L, et al. Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 2012; 120:3298 - 309; http://dx.doi.org/10.1182/blood-2012-04-425488; PMID: 22948044
  • Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20:1496 - 510; http://dx.doi.org/10.1038/sj.leu.2404302; PMID: 16826225
  • Savic V, Yin B, Maas NL, Bredemeyer AL, Carpenter AC, Helmink BA, Yang-Iott KS, Sleckman BP, Bassing CH. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol Cell 2009; 34:298 - 310; http://dx.doi.org/10.1016/j.molcel.2009.04.012; PMID: 19450528

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.