1,257
Views
20
CrossRef citations to date
0
Altmetric
Report

Human CAF-1-dependent nucleosome assembly in a defined system

, &
Pages 3286-3297 | Received 12 Aug 2013, Accepted 28 Aug 2013, Published online: 11 Sep 2013

References

  • Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science 1974; 184:868 - 71; http://dx.doi.org/10.1126/science.184.4139.868; PMID: 4825889
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251 - 60; http://dx.doi.org/10.1038/38444; PMID: 9305837
  • Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007; 128:721 - 33; http://dx.doi.org/10.1016/j.cell.2007.01.030; PMID: 17320509
  • Ransom M, Dennehey BK, Tyler JK. Chaperoning histones during DNA replication and repair. Cell 2010; 140:183 - 95; http://dx.doi.org/10.1016/j.cell.2010.01.004; PMID: 20141833
  • Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 2004; 20:320 - 6; http://dx.doi.org/10.1016/j.tig.2004.05.004; PMID: 15219397
  • Rocha W, Verreault A. Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways. FEBS Lett 2008; 582:1938 - 49; http://dx.doi.org/10.1016/j.febslet.2008.03.006; PMID: 18343227
  • Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 2013; 20:14 - 22; http://dx.doi.org/10.1038/nsmb.2461; PMID: 23288364
  • Andrews AJ, Chen X, Zevin A, Stargell LA, Luger K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol Cell 2010; 37:834 - 42; http://dx.doi.org/10.1016/j.molcel.2010.01.037; PMID: 20347425
  • Lucchini R, Wellinger RE, Sogo JM. Nucleosome positioning at the replication fork. EMBO J 2001; 20:7294 - 302; http://dx.doi.org/10.1093/emboj/20.24.7294; PMID: 11743005
  • Smith S, Stillman B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 1989; 58:15 - 25; http://dx.doi.org/10.1016/0092-8674(89)90398-X; PMID: 2546672
  • Hoek M, Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A 2003; 100:12183 - 8; http://dx.doi.org/10.1073/pnas.1635158100; PMID: 14519857
  • Smith S, Stillman B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 1991; 10:971 - 80; PMID: 1849080
  • Kaufman PD, Kobayashi R, Kessler N, Stillman B. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 1995; 81:1105 - 14; http://dx.doi.org/10.1016/S0092-8674(05)80015-7; PMID: 7600578
  • Verreault A, Kaufman PD, Kobayashi R, Stillman B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 1996; 87:95 - 104; http://dx.doi.org/10.1016/S0092-8674(00)81326-4; PMID: 8858152
  • Nabatiyan A, Krude T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol 2004; 24:2853 - 62; http://dx.doi.org/10.1128/MCB.24.7.2853-2862.2004; PMID: 15024074
  • Polo SE, Theocharis SE, Grandin L, Gambotti L, Antoni G, Savignoni A, Asselain B, Patsouris E, Almouzni G. Clinical significance and prognostic value of chromatin assembly factor-1 overexpression in human solid tumours. Histopathology 2010; 57:716 - 24; http://dx.doi.org/10.1111/j.1365-2559.2010.03681.x; PMID: 21083601
  • Kaufman PD, Kobayashi R, Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 1997; 11:345 - 57; http://dx.doi.org/10.1101/gad.11.3.345; PMID: 9030687
  • Myung K, Pennaneach V, Kats ES, Kolodner RD. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A 2003; 100:6640 - 5; http://dx.doi.org/10.1073/pnas.1232239100; PMID: 12750463
  • Smith DJ, Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 2012; 483:434 - 8; http://dx.doi.org/10.1038/nature10895; PMID: 22419157
  • Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999; 96:575 - 85; http://dx.doi.org/10.1016/S0092-8674(00)80661-3; PMID: 10052459
  • Rolef Ben-Shahar T, Castillo AG, Osborne MJ, Borden KL, Kornblatt J, Verreault A. Two fundamentally distinct PCNA interaction peptides contribute to chromatin assembly factor 1 function. Mol Cell Biol 2009; 29:6353 - 65; http://dx.doi.org/10.1128/MCB.01051-09; PMID: 19822659
  • Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 1987; 326:517 - 20; http://dx.doi.org/10.1038/326517a0; PMID: 2882424
  • Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007; 129:665 - 79; http://dx.doi.org/10.1016/j.cell.2007.05.003; PMID: 17512402
  • Tsurimoto T, Stillman B. Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol 1989; 9:609 - 19; PMID: 2565531
  • Tsurimoto T, Stillman B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 1991; 266:1950 - 60; PMID: 1671045
  • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A 2010; 107:16066 - 71; http://dx.doi.org/10.1073/pnas.1010662107; PMID: 20713735
  • Kadyrova LY, Blanko ER, Kadyrov FA. CAF-I-dependent control of degradation of the discontinuous strands during mismatch repair. Proc Natl Acad Sci U S A 2011; 108:2753 - 8; http://dx.doi.org/10.1073/pnas.1015914108; PMID: 21282622
  • Franklin SG, Zweidler A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 1977; 266:273 - 5; http://dx.doi.org/10.1038/266273a0; PMID: 846573
  • Brown DT, Wellman SE, Sittman DB. Changes in the levels of three different classes of histone mRNA during murine erythroleukemia cell differentiation. Mol Cell Biol 1985; 5:2879 - 86; PMID: 3018484
  • McKittrick E, Gafken PR, Ahmad K, Henikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A 2004; 101:1525 - 30; http://dx.doi.org/10.1073/pnas.0308092100; PMID: 14732680
  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004; 116:51 - 61; http://dx.doi.org/10.1016/S0092-8674(03)01064-X; PMID: 14718166
  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 1999; 402:555 - 60; http://dx.doi.org/10.1038/990147; PMID: 10591219
  • Silljé HH, Nigg EA. Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 2001; 11:1068 - 73; http://dx.doi.org/10.1016/S0960-9822(01)00298-6; PMID: 11470414
  • Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G. Regulation of replication fork progression through histone supply and demand. Science 2007; 318:1928 - 31; http://dx.doi.org/10.1126/science.1148992; PMID: 18096807
  • Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 2007; 446:338 - 41; http://dx.doi.org/10.1038/nature05613; PMID: 17293877
  • Mello JA, Silljé HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 2002; 3:329 - 34; http://dx.doi.org/10.1093/embo-reports/kvf068; PMID: 11897662
  • Corpet A, De Koning L, Toedling J, Savignoni A, Berger F, Lemaitre C, et al. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 2011; 30:480 - 93; PMID: 21179005
  • Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell 2005; 17:301 - 11; http://dx.doi.org/10.1016/j.molcel.2004.12.018; PMID: 15664198
  • Schulz LL, Tyler JK. The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB J 2006; 20:488 - 90; PMID: 16396992
  • Sanematsu F, Takami Y, Barman HK, Fukagawa T, Ono T, Shibahara K, Nakayama T. Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J Biol Chem 2006; 281:13817 - 27; http://dx.doi.org/10.1074/jbc.M511590200; PMID: 16537536
  • Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD. Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 2003; 13:2148 - 58; http://dx.doi.org/10.1016/j.cub.2003.11.027; PMID: 14680630
  • English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK. Structural basis for the histone chaperone activity of Asf1. Cell 2006; 127:495 - 508; http://dx.doi.org/10.1016/j.cell.2006.08.047; PMID: 17081973
  • Attia M, Förster A, Rachez C, Freemont P, Avner P, Rogner UC. Interaction between nucleosome assembly protein 1-like family members. J Mol Biol 2011; 407:647 - 60; http://dx.doi.org/10.1016/j.jmb.2011.02.016; PMID: 21333655
  • Ito T, Bulger M, Kobayashi R, Kadonaga JT. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 1996; 16:3112 - 24; PMID: 8649423
  • Grande M, Lambea E, Fajardo A, López-Avilés S, Kellogg D, Aligue R. Crosstalk between Nap1 protein and Cds1 checkpoint kinase to maintain chromatin integrity. Biochim Biophys Acta 2008; 1783:1595 - 604; http://dx.doi.org/10.1016/j.bbamcr.2008.03.019; PMID: 18474252
  • Krawitz DC, Kama T, Kaufman PD. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 2002; 22:614 - 25; http://dx.doi.org/10.1128/MCB.22.2.614-625.2002; PMID: 11756556
  • English CM, Maluf NK, Tripet B, Churchill ME, Tyler JK. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 2005; 44:13673 - 82; http://dx.doi.org/10.1021/bi051333h; PMID: 16229457
  • Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR 3rd, Kaufman PD. Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 2005; 15:2044 - 9; http://dx.doi.org/10.1016/j.cub.2005.10.053; PMID: 16303565
  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science 2003; 301:1090 - 3; http://dx.doi.org/10.1126/science.1085703; PMID: 12934006
  • Schlesinger MB, Formosa T. POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 2000; 155:1593 - 606; PMID: 10924459
  • Moggs JG, Grandi P, Quivy JP, Jónsson ZO, Hübscher U, Becker PB, Almouzni G. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 2000; 20:1206 - 18; http://dx.doi.org/10.1128/MCB.20.4.1206-1218.2000; PMID: 10648606
  • Shibahara K, Verreault A, Stillman B. The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro. Proc Natl Acad Sci U S A 2000; 97:7766 - 71; http://dx.doi.org/10.1073/pnas.97.14.7766; PMID: 10884407
  • Burgers PM. Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 2009; 284:4041 - 5; http://dx.doi.org/10.1074/jbc.R800062200; PMID: 18835809
  • Waga S, Bauer G, Stillman B. Reconstitution of complete SV40 DNA replication with purified replication factors. J Biol Chem 1994; 269:10923 - 34; PMID: 8144677
  • Waga S, Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 1994; 369:207 - 12; http://dx.doi.org/10.1038/369207a0; PMID: 7910375
  • Podust VN, Chang LS, Ott R, Dianov GL, Fanning E. Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 2002; 277:3894 - 901; http://dx.doi.org/10.1074/jbc.M109684200; PMID: 11711545
  • Stillman B. Chromatin assembly during SV40 DNA replication in vitro. Cell 1986; 45:555 - 65; http://dx.doi.org/10.1016/0092-8674(86)90287-4; PMID: 3011272
  • Anderson M, Huh JH, Ngo T, Lee A, Hernandez G, Pang J, Perkins J, Dutnall RN. Co-expression as a convenient method for the production and purification of core histones in bacteria. Protein Expr Purif 2010; 72:194 - 204; http://dx.doi.org/10.1016/j.pep.2010.03.013; PMID: 20347990
  • Liu WH, Roemer SC, Port AM, Churchill ME. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res 2012; 40:11229 - 39; http://dx.doi.org/10.1093/nar/gks906; PMID: 23034810
  • Winkler DD, Zhou H, Dar MA, Zhang Z, Luger K. Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res 2012; 40:10139 - 49; http://dx.doi.org/10.1093/nar/gks812; PMID: 22941638
  • Tsurimoto T, Stillman B. Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci U S A 1990; 87:1023 - 7; http://dx.doi.org/10.1073/pnas.87.3.1023; PMID: 1967833
  • Sogo JM, Stahl H, Koller T, Knippers R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 1986; 189:189 - 204; http://dx.doi.org/10.1016/0022-2836(86)90390-6; PMID: 3023620
  • Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 2004; 18:2764 - 73; http://dx.doi.org/10.1101/gad.1252304; PMID: 15520275
  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA. Division of labor at the eukaryotic replication fork. Mol Cell 2008; 30:137 - 44; http://dx.doi.org/10.1016/j.molcel.2008.02.022; PMID: 18439893
  • Collins N, Poot RA, Kukimoto I, García-Jiménez C, Dellaire G, Varga-Weisz PD. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 2002; 32:627 - 32; http://dx.doi.org/10.1038/ng1046; PMID: 12434153
  • Vincent JA, Kwong TJ, Tsukiyama T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 2008; 15:477 - 84; http://dx.doi.org/10.1038/nsmb.1419; PMID: 18408730
  • Falbo KB, Alabert C, Katou Y, Wu S, Han J, Wehr T, Xiao J, He X, Zhang Z, Shi Y, et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat Struct Mol Biol 2009; 16:1167 - 72; http://dx.doi.org/10.1038/nsmb.1686; PMID: 19855395
  • Torigoe SE, Urwin DL, Ishii H, Smith DE, Kadonaga JT. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol Cell 2011; 43:638 - 48; http://dx.doi.org/10.1016/j.molcel.2011.07.017; PMID: 21855802
  • Roberts JD, Kunkel TA. Fidelity of DNA replication in human cells. Methods Mol Genetics 1993; 2:295 - 313
  • Tachiwana H, Osakabe A, Kimura H, Kurumizaka H. Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro. Nucleic Acids Res 2008; 36:2208 - 18; http://dx.doi.org/10.1093/nar/gkn060; PMID: 18281699
  • Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, Modrich P. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc Natl Acad Sci U S A 2009; 106:8495 - 500; http://dx.doi.org/10.1073/pnas.0903654106; PMID: 19420220
  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126:297 - 308; http://dx.doi.org/10.1016/j.cell.2006.05.039; PMID: 16873062
  • Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P. A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 2004; 15:31 - 41; http://dx.doi.org/10.1016/j.molcel.2004.06.016; PMID: 15225546
  • Gamper H, Lehman N, Piette J, Hearst JE. Purification of circular DNA using benzoylated naphthoylated DEAE-cellulose. DNA 1985; 4:157 - 64; http://dx.doi.org/10.1089/dna.1985.4.157; PMID: 3996184