2,245
Views
26
CrossRef citations to date
0
Altmetric
Review

Divide and differentiate

CDK/Cyclins and the art of development

, , , &
Pages 1384-1391 | Received 10 Mar 2014, Accepted 25 Mar 2014, Published online: 26 Mar 2014

References

  • Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13:261 - 91; http://dx.doi.org/10.1146/annurev.cellbio.13.1.261; PMID: 9442875
  • Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH, Wolgemuth DJ. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11:1275 - 6; http://dx.doi.org/10.1038/ncb1109-1275; PMID: 19884882
  • Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140:3079 - 93; http://dx.doi.org/10.1242/dev.091744; PMID: 23861057
  • Möröy T, Geisen C, Cyclin E. Cyclin E. Int J Biochem Cell Biol 2004; 36:1424 - 39; http://dx.doi.org/10.1016/j.biocel.2003.12.005; PMID: 15147722
  • Gönczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 2008; 9:355 - 66; http://dx.doi.org/10.1038/nrm2388; PMID: 18431399
  • Li R. The art of choreographing asymmetric cell division. Dev Cell 2013; 25:439 - 50; http://dx.doi.org/10.1016/j.devcel.2013.05.003; PMID: 23763946
  • Knoblich JA. Mechanisms of asymmetric stem cell division. Cell 2008; 132:583 - 97; http://dx.doi.org/10.1016/j.cell.2008.02.007; PMID: 18295577
  • Horvitz HR, Herskowitz I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 1992; 68:237 - 55; http://dx.doi.org/10.1016/0092-8674(92)90468-R; PMID: 1733500
  • Betschinger J, Knoblich JA. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 2004; 14:R674 - 85; http://dx.doi.org/10.1016/j.cub.2004.08.017; PMID: 15324689
  • Tio M, Udolph G, Yang X, Chia W. cdc2 links the Drosophila cell cycle and asymmetric division machineries. Nature 2001; 409:1063 - 7; http://dx.doi.org/10.1038/35059124; PMID: 11234018
  • Chia W, Somers WG, Wang H. Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J Cell Biol 2008; 180:267 - 72; http://dx.doi.org/10.1083/jcb.200708159; PMID: 18209103
  • Akiyama-Oda Y, Hosoya T, Hotta Y. Asymmetric cell division of thoracic neuroblast 6-4 to bifurcate glial and neuronal lineage in Drosophila. Development 1999; 126:1967 - 74; PMID: 10101130
  • Berger C, Pallavi SK, Prasad M, Shashidhara LS, Technau GM. A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nat Cell Biol 2005; 7:56 - 62; http://dx.doi.org/10.1038/ncb1203; PMID: 15580266
  • Berger C, Kannan R, Myneni S, Renner S, Shashidhara LS, Technau GM. Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function. Dev Biol 2010; 337:415 - 24; http://dx.doi.org/10.1016/j.ydbio.2009.11.012; PMID: 19914234
  • Ables ET, Drummond-Barbosa D. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 2013; 140:530 - 40; http://dx.doi.org/10.1242/dev.088583; PMID: 23293285
  • Shirayama M, Soto MC, Ishidate T, Kim S, Nakamura K, Bei Y, van den Heuvel S, Mello CC. The Conserved Kinases CDK-1, GSK-3, KIN-19, and MBK-2 Promote OMA-1 Destruction to Regulate the Oocyte-to-Embryo Transition in C. elegans. Curr Biol 2006; 16:47 - 55; http://dx.doi.org/10.1016/j.cub.2005.11.070; PMID: 16343905
  • Boxem M, Srinivasan DG, van den Heuvel S. The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 1999; 126:2227 - 39; PMID: 10207147
  • Polinko ES, Strome S. Depletion of a Cks homolog in C. elegans embryos uncovers a post-metaphase role in both meiosis and mitosis. Curr Biol 2000; 10:1471 - 4; http://dx.doi.org/10.1016/S0960-9822(00)00808-3; PMID: 11102813
  • Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995; 376:313 - 20; http://dx.doi.org/10.1038/376313a0; PMID: 7630397
  • Detwiler MR, Reuben M, Li X, Rogers E, Lin R. Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 2001; 1:187 - 99; http://dx.doi.org/10.1016/S1534-5807(01)00026-0; PMID: 11702779
  • Shimada M, Kawahara H, Doi H. Novel family of CCCH-type zinc-finger proteins, MOE-1, -2 and -3, participates in C. elegans oocyte maturation. Genes Cells 2002; 7:933 - 47; http://dx.doi.org/10.1046/j.1365-2443.2002.00570.x; PMID: 12296824
  • Lin R. A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality. Dev Biol 2003; 258:226 - 39; http://dx.doi.org/10.1016/S0012-1606(03)00119-2; PMID: 12781695
  • Guven-Ozkan T, Nishi Y, Robertson SM, Lin R. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 2008; 135:149 - 60; http://dx.doi.org/10.1016/j.cell.2008.07.040; PMID: 18854162
  • Guven-Ozkan T, Robertson SM, Nishi Y, Lin R. zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 2010; 137:3373 - 82; http://dx.doi.org/10.1242/dev.055327; PMID: 20826530
  • Mello CC, Schubert C, Draper B, Zhang W, Lobel R, Priess JR. The PIE-1 protein and germline specification in C. elegans embryos. Nature 1996; 382:710 - 2; http://dx.doi.org/10.1038/382710a0; PMID: 8751440
  • Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 1996; 382:713 - 6; http://dx.doi.org/10.1038/382713a0; PMID: 8751441
  • Nishi Y, Lin R. DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev Biol 2005; 288:139 - 49; http://dx.doi.org/10.1016/j.ydbio.2005.09.053; PMID: 16289132
  • Stitzel ML, Pellettieri J, Seydoux G. The C. elegans DYRK Kinase MBK-2 Marks Oocyte Proteins for Degradation in Response to Meiotic Maturation. Curr Biol 2006; 16:56 - 62; http://dx.doi.org/10.1016/j.cub.2005.11.063; PMID: 16338136
  • Cheng KC, Klancer R, Singson A, Seydoux G. Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 2009; 139:560 - 72; http://dx.doi.org/10.1016/j.cell.2009.08.047; PMID: 19879842
  • Parry JM, Velarde NV, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD, et al. EGG-4 and EGG-5 Link Events of the Oocyte-to-Embryo Transition with Meiotic Progression in C. elegans. Curr Biol 2009; 19:1752 - 7; http://dx.doi.org/10.1016/j.cub.2009.09.015; PMID: 19879147
  • Thorpe CJ, Schlesinger A, Carter JC, Bowerman B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 1997; 90:695 - 705; http://dx.doi.org/10.1016/S0092-8674(00)80530-9; PMID: 9288749
  • Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello CC. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 1997; 90:707 - 16; http://dx.doi.org/10.1016/S0092-8674(00)80531-0; PMID: 9288750
  • Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 1999; 13:2028 - 38; http://dx.doi.org/10.1101/gad.13.15.2028; PMID: 10444600
  • Bei Y, Hogan J, Berkowitz LA, Soto M, Rocheleau CE, Pang KM, Collins J, Mello CC. SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. Dev Cell 2002; 3:113 - 25; http://dx.doi.org/10.1016/S1534-5807(02)00185-5; PMID: 12110172
  • Walston T, Tuskey C, Edgar L, Hawkins N, Ellis G, Bowerman B, Wood W, Hardin J. Multiple Wnt signaling pathways converge to orient the mitotic spindle in early C. elegans embryos. Dev Cell 2004; 7:831 - 41; http://dx.doi.org/10.1016/j.devcel.2004.10.008; PMID: 15572126
  • Ishidate T, Kim S, Mello C, Shirayama M. Inductive asymmetric cell division: The WRM leads the way. Worm 2013; 2:e26276; http://dx.doi.org/10.4161/worm.26276; PMID: 24524013
  • Nakamura K, Kim S, Ishidate T, Bei Y, Pang K, Shirayama M, Trzepacz C, Brownell DR, Mello CC. Wnt signaling drives WRM-1/beta-catenin asymmetries in early C. elegans embryos. Genes Dev 2005; 19:1749 - 54; http://dx.doi.org/10.1101/gad.1323705; PMID: 16077004
  • Kim S, Ishidate T, Sharma R, Soto MC, Conte D Jr., Mello CC, Shirayama M. Wnt and CDK-1 regulate cortical release of WRM-1/β-catenin to control cell division orientation in early Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 2013; 110:E918 - 27; http://dx.doi.org/10.1073/pnas.1300769110; PMID: 23431196
  • Kimble J, Crittenden SL. Germline proliferation and its control. In: Community TCeR, ed. Worm Book, 2005.
  • Kimble J, Simpson P. The LIN-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 1997; 13:333 - 61; http://dx.doi.org/10.1146/annurev.cellbio.13.1.333; PMID: 9442877
  • Crittenden SL, Eckmann CR, Wang L, Bernstein DS, Wickens M, Kimble J. Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci 2003; 358:1359 - 62; http://dx.doi.org/10.1098/rstb.2003.1333; PMID: 14511482
  • Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 1996; 122:1373 - 83; PMID: 8625826
  • Hansen D, Wilson-Berry L, Dang T, Schedl T. Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 2004; 131:93 - 104; http://dx.doi.org/10.1242/dev.00916; PMID: 14660440
  • Marin VA, Evans TC. Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 2003; 130:2623 - 32; http://dx.doi.org/10.1242/dev.00486; PMID: 12736207
  • Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T. Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 2011; 138:2223 - 34; http://dx.doi.org/10.1242/dev.059535; PMID: 21558371
  • Jeong J, Verheyden JM, Kimble J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 2011; 7:e1001348; http://dx.doi.org/10.1371/journal.pgen.1001348; PMID: 21455289
  • Nusser-Stein S, Beyer A, Rimann I, Adamczyk M, Piterman N, Hajnal A, Fisher J. Cell-cycle regulation of NOTCH signaling during C. elegans vulval development. Mol Syst Biol 2012; 8:618; http://dx.doi.org/10.1038/msb.2012.51; PMID: 23047528
  • Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R. Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 2009; 17:355 - 64; http://dx.doi.org/10.1016/j.devcel.2009.08.003; PMID: 19758560
  • Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C. Cell cycle control of wnt receptor activation. Dev Cell 2009; 17:788 - 99; http://dx.doi.org/10.1016/j.devcel.2009.11.006; PMID: 20059949

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.