1,927
Views
36
CrossRef citations to date
0
Altmetric
Review

Cdc25 and the importance of G2 control

Insights from developmental biology

Pages 2165-2171 | Received 08 May 2014, Accepted 09 Jun 2014, Published online: 10 Jun 2014

References

  • Foe VE. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 1989; 107:1 - 22; PMID: 2516798
  • Edgar BA, O’Farrell PH. Genetic control of cell division patterns in the Drosophila embryo. Cell 1989; 57:177 - 87; http://dx.doi.org/10.1016/0092-8674(89)90183-9; PMID: 2702688
  • Lehman DA, Patterson B, Johnston LA, Balzer T, Britton JS, Saint R, Edgar BA. Cis-regulatory elements of the mitotic regulator, string/Cdc25. Development 1999; 126:1793 - 803; PMID: 10101114
  • Russell P, Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 1986; 45:145 - 53; http://dx.doi.org/10.1016/0092-8674(86)90546-5; PMID: 3955656
  • Edgar BA, O’Farrell PH. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 1990; 62:469 - 80; http://dx.doi.org/10.1016/0092-8674(90)90012-4; PMID: 2199063
  • Foe VE, O’Dell GM, Edgar BA. Mitosis and morphogenesis in the Drosophila embryo: point and counterpoint. In: The Development of Drosophila melanogaster. Cold Spring Harbor, NY: Cold Spring Harbor Laboratories Press; 1993. page 149–300.
  • Murray AW. Recycling the cell cycle: cyclins revisited. Cell 2004; 116:221 - 34; http://dx.doi.org/10.1016/S0092-8674(03)01080-8; PMID: 14744433
  • Murray AW, Kirschner MW. Cyclin synthesis drives the early embryonic cell cycle. Nature 1989; 339:275 - 80; http://dx.doi.org/10.1038/339275a0; PMID: 2566917
  • Morgan DO. The Cell Cycle: Principles of control. London: New Science Press Ltd; 2007.
  • Tsai TY-C, Theriot JA, Ferrell JE Jr.. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol 2014; 12:e1001788; http://dx.doi.org/10.1371/journal.pbio.1001788; PMID: 24523664
  • Weaver C, Kimelman D. Move it or lose it: axis specification in Xenopus. Development 2004; 131:3491 - 9; http://dx.doi.org/10.1242/dev.01284; PMID: 15262887
  • Chen AA, Tan L, Suraj V, Reijo Pera R, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril 2013; 99:1035 - 43; http://dx.doi.org/10.1016/j.fertnstert.2013.01.143; PMID: 23499001
  • Ciemerych MA, Sicinski P. Cell cycle in mouse development. Oncogene 2005; 24:2877 - 98; http://dx.doi.org/10.1038/sj.onc.1208608; PMID: 15838522
  • Newport J, Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 1982; 30:675 - 86; http://dx.doi.org/10.1016/0092-8674(82)90272-0; PMID: 6183003
  • Newport J, Kirschner M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 1982; 30:687 - 96; http://dx.doi.org/10.1016/0092-8674(82)90273-2; PMID: 7139712
  • Edgar BA, Datar SA. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program. Genes Dev 1996; 10:1966 - 77; http://dx.doi.org/10.1101/gad.10.15.1966; PMID: 8756353
  • Di Talia S, She R, Blythe SA, Lu X, Zhang QF, Wieschaus EF. Posttranslational control of Cdc25 degradation terminates Drosophila’s early cell-cycle program. Curr Biol 2013; 23:127 - 32; http://dx.doi.org/10.1016/j.cub.2012.11.029; PMID: 23290553
  • Farrell JA, O’Farrell PH. Mechanism and regulation of Cdc25/Twine protein destruction in embryonic cell-cycle remodeling. Curr Biol 2013; 23:118 - 26; http://dx.doi.org/10.1016/j.cub.2012.11.036; PMID: 23290551
  • Lohan F, Keeshan K. The functionally diverse roles of tribbles. Biochem Soc Trans 2013; 41:1096 - 100; http://dx.doi.org/10.1042/BST20130105; PMID: 23863185
  • Sung HW, Spangenberg S, Vogt N, Großhans J. Number of nuclear divisions in the Drosophila blastoderm controlled by onset of zygotic transcription. Curr Biol 2013; 23:133 - 8; http://dx.doi.org/10.1016/j.cub.2012.12.013; PMID: 23290555
  • Liang H-L, Nien C-Y, Liu H-Y, Metzstein MM, Kirov N, Rushlow C. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 2008; 456:400 - 3; http://dx.doi.org/10.1038/nature07388; PMID: 18931655
  • Harrison MM, Li X-Y, Kaplan T, Botchan MR, Eisen MB. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 2011; 7:e1002266; http://dx.doi.org/10.1371/journal.pgen.1002266; PMID: 22028662
  • Edgar BA, Sprenger F, Duronio RJ, Leopold P, O’Farrell PH. Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 1994; 8:440 - 52; http://dx.doi.org/10.1101/gad.8.4.440; PMID: 7510257
  • Sibon OC, Stevenson VA, Theurkauf WE. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 1997; 388:93 - 7; http://dx.doi.org/10.1038/40439; PMID: 9214509
  • Pritchard DK, Schubiger G. Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev 1996; 10:1131 - 42; http://dx.doi.org/10.1101/gad.10.9.1131; PMID: 8654928
  • Kim SH, Li C, Maller JL. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol 1999; 212:381 - 91; http://dx.doi.org/10.1006/dbio.1999.9361; PMID: 10433828
  • Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 2002; 21:3694 - 703; http://dx.doi.org/10.1093/emboj/cdf357; PMID: 12110582
  • Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J 2004; 23:3386 - 96; http://dx.doi.org/10.1038/sj.emboj.7600328; PMID: 15272308
  • Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 2013; 341:893 - 6; http://dx.doi.org/10.1126/science.1241530; PMID: 23907533
  • Kimelman D, Kirschner M, Scherson T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 1987; 48:399 - 407; http://dx.doi.org/10.1016/0092-8674(87)90191-7; PMID: 3802197
  • Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS. An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 2011; 357:478 - 91; http://dx.doi.org/10.1016/j.ydbio.2011.06.010; PMID: 21741375
  • Kimelman D. Mesoderm induction: from caps to chips. Nat Rev Genet 2006; 7:360 - 72; http://dx.doi.org/10.1038/nrg1837; PMID: 16619051
  • Solnica-Krezel L, Sepich DS. Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 2012; 28:687 - 717; http://dx.doi.org/10.1146/annurev-cellbio-092910-154043; PMID: 22804578
  • Keller R, Davidson L. Cell movements of gastrulation. In: Gastrulation: From Cells to Embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratories Press; 2004. pp 291–304.
  • Martin AC, Goldstein B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 2014; 141:1987 - 98; http://dx.doi.org/10.1242/dev.102228; PMID: 24803648
  • Murakami MS, Moody SA, Daar IO, Morrison DK. Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 2004; 131:571 - 80; http://dx.doi.org/10.1242/dev.00971; PMID: 14711880
  • Leise W 3rd, Mueller PR. Multiple Cdk1 inhibitory kinases regulate the cell cycle during development. Dev Biol 2002; 249:156 - 73; http://dx.doi.org/10.1006/dbio.2002.0743; PMID: 12217326
  • Mata J, Curado S, Ephrussi A, Rørth P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 2000; 101:511 - 22; http://dx.doi.org/10.1016/S0092-8674(00)80861-2; PMID: 10850493
  • Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 2000; 101:523 - 31; http://dx.doi.org/10.1016/S0092-8674(00)80862-4; PMID: 10850494
  • Seher TC, Leptin M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 2000; 10:623 - 9; http://dx.doi.org/10.1016/S0960-9822(00)00502-9; PMID: 10837248
  • Bouldin CM, Snelson CD, Farr GH 3rd, Kimelman D. Restricted expression of cdc25a in the tailbud is essential for formation of the zebrafish posterior body. Genes Dev 2014; 28:384 - 95; http://dx.doi.org/10.1101/gad.233577.113; PMID: 24478331
  • Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 2011; 138:577 - 87; http://dx.doi.org/10.1242/dev.053132; PMID: 21205801
  • Sasakura Y, Mita K, Ogura Y, Horie T. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev Growth Differ 2012; 54:420 - 37; http://dx.doi.org/10.1111/j.1440-169X.2012.01343.x; PMID: 22524611
  • Kimelman D, Martin BL. Anterior-posterior patterning in early development: three strategies. Wiley Interdiscip Rev Dev Biol 2012; 1:253 - 66; http://dx.doi.org/10.1002/wdev.25; PMID: 23801439
  • Wilson V, Olivera-Martinez I, Storey KG. Stem cells, signals and vertebrate body axis extension. Development 2009; 136:1591 - 604; http://dx.doi.org/10.1242/dev.021246; PMID: 19395637
  • Nogare DE, Arguello A, Sazer S, Lane ME. Zebrafish cdc25a is expressed during early development and limiting for post-blastoderm cell cycle progression. Dev Dyn 2007; 236:3427 - 35; http://dx.doi.org/10.1002/dvdy.21363; PMID: 17969147
  • Griffin KJ, Kimelman D. One-Eyed Pinhead and Spadetail are essential for heart and somite formation. Nat Cell Biol 2002; 4:821 - 5; http://dx.doi.org/10.1038/ncb862; PMID: 12360294
  • Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432:298 - 306; http://dx.doi.org/10.1038/nature03094; PMID: 15549091
  • Sugiyama M, Sakaue-Sawano A, Iimura T, Fukami K, Kitaguchi T, Kawakami K, Okamoto H, Higashijima S, Miyawaki A. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci U S A 2009; 106:20812 - 7; http://dx.doi.org/10.1073/pnas.0906464106; PMID: 19923430
  • Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132:487 - 98; http://dx.doi.org/10.1016/j.cell.2007.12.033; PMID: 18267078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.