782
Views
18
CrossRef citations to date
0
Altmetric
Report

kin-19/casein kinase Iα has dual functions in regulating asymmetric division and terminal differentiation in C. elegans epidermal stem cells

, , &
Pages 4748-4765 | Published online: 01 Dec 2010

References

  • Staal FJT, Luis TC. Wnt signaling in hematopoiesis: Crucial factors for self-renewal, proliferation and cell fate decisions. J Cell Biochem 2010; 109:844 - 849
  • Nusse R. Wnt signaling and stem cell control. Cell Res 2008; 18:523 - 527
  • Joshi PM, Riddle MR, Djabrayan NJV, Rothman JH. Caenorhabditis elegans as a model for stem cell biology. Dev Dyn 2010; 239:1539 - 1554
  • Nimmo RA, Slack FJ. An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 2009; 14
  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 1977; 56:110 - 156
  • Moss E. Heterochronic Genes and the Nature of Developmental Time. Curr Biol 2007; 17:425 - 434
  • Eisenmann DM. Wnt signaling. WormBook 2005; 1 - 17
  • Mizumoto K, Sawa H. Two betas or not two betas: regulation of asymmetric division by beta-catenin. Trends in Cell Biology 2007; 17:465 - 473
  • Huang X, Tian E, Xu Y, Zhang H. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells. Developmental Biology 2009; 333:337 - 347
  • Nimmo R, Antebi A, Woollard A. mab-2 encodes RNT-1, a C. elegans Runx homologue essential for controlling cell proliferation in a stem cell-like developmental lineage. Development 2005; 132:5043 - 5054
  • Xia D, Zhang Y, Huang X, Sun Y, Zhang H. The C. elegans CBFβ homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages. Dev Biol 2007; 309:259 - 272
  • Kagoshima H, Shigesada K, Kohara Y. RUNX regulates stem cell proliferation and differentiation: Insights from studies of C. elegans. J Cell Biochem 2007; 100:1119 - 1130
  • Resnick TD, Mcculloch KA, Rougvie AE. miRNAs give worms the time of their lives: Small RNAs and temporal control in Caenorhabditis elegans. Dev Dyn 2010; 239:1477 - 1489
  • Van Hoffelen S, Herman MA. Analysis of Wnt signaling during Caenorhabditis elegans postembryonic development. Methods Mol Biol 2008; 469:87 - 102
  • Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127:469 - 480
  • Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M. The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17:675 - 689
  • Lin R, Hill RJ, Priess JR. POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 1998; 92:229 - 239
  • Korswagen HC, Herman MA, Clevers HC. Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 2000; 406:527 - 532
  • Natarajan L, Witwer NE, Eisenmann DM. The divergent Caenorhabditis elegans beta-catenin proteins BAR-1, WRM-1 and HMP-2 make distinct protein interactions but retain functional redundancy in vivo. Genetics 2001; 159:159 - 172
  • Kidd AR 3rd, Miskowski JA, Siegfried KR, Sawa H, Kimble J. A beta-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell 2005; 121:761 - 772
  • Rocheleau CE, Yasuda J, Shin TH, Lin R, Sawa H, Okano H, et al. WRM-1 activates the LIT-1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell 1999; 97:717 - 726
  • Hunter CP, Harris JM, Maloof JN, Kenyon C. Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit wnt signaling. Development 1999; 126:805 - 814
  • Phillips BT, Kidd AR, King R, Hardin J, Kimble J. Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proc Natl Acad Sci USA 2007; 104:3231 - 3236
  • Abbott A, Alvarezsaavedra E, Miska E, Lau N, Bartel D, Horvitz H, et al. The let-7 microRNA family members mir-48, mir-84 and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 2005; 9:403 - 414
  • Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, et al. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res 2008; 18:600 - 603
  • Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ, Sliz P, et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 2008; 283:21310 - 21314
  • Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E, Nitsch R, et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 19
  • Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008; 320:97 - 100
  • Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, Michel G, et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol 2009; 11:1411 - 1420
  • Elliott J, Jolicoeur C, Ramamurthy V, Cayouette M. Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 2008; 60:26 - 39
  • Urban J, Mettler U. Connecting temporal identity to mitosis: the regulation of Hunchback in Drosophila neuroblast lineages. Cell Cycle 2006; 5:950 - 952
  • Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Würl PU, et al. The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie 2005; 28:508 - 514
  • Banerjee D, Kwok A, Lin SY, Slack FJ. Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes. Dev Cell 2005; 8:287 - 295
  • Virshup DM, Eide EJ, Forger DB, Gallego M, Harnish EV. Reversible protein phosphorylation regulates circadian rhythms. Cold Spring Harb Symp Quant Biol 2007; 72:413 - 420
  • Borgs L, Beukelaers P, Vandenbosch R, Nguyen L, Moonen G, Maquet P, et al. Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus. BMC Neurosci 2009; 10:30
  • Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452:442 - 447
  • Moriya T, Hiraishi K, Horie N, Mitome M, Shinohara K. Correlative association between circadian expression of mousePer2 gene and the proliferation of the neural stem cells. Neuroscience 2007; 146:494 - 498
  • Green CL, Bennett GS. Identification of four alternatively spliced isoforms of chicken casein kinase Ialpha that are all expressed in diverse cell types. Gene 1998; 216:189 - 195
  • Korswagen HC. Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. Bioessays 2002; 24:801 - 810
  • Peters JM, McKay RM, McKay JP, Graff JM. Casein kinase I transduces Wnt signals. Nature 1999; 401:345 - 350
  • Price MA. CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 2006; 20:399 - 410
  • Herman M. C. elegans POP-1/TCF functions in a canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway that controls cell polarity. Development 2001; 128:581 - 590
  • Shin TH, Yasuda J, Rocheleau CE, Lin R, Soto M, Bei Y, et al. MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Molecular Cell 1999; 4:275 - 280
  • Nakamura K, Kim S, Ishidate T, Bei Y, Pang K, Shirayama M, et al. Wnt signaling drives WRM-1/beta-catenin asymmetries in early C. elegans embryos. Genes Dev 2005; 19:1749 - 1754
  • Takeshita H, Sawa H. Asymmetric cortical and nuclear localizations of WRM-1/beta-catenin during asymmetric cell division in C. elegans. Genes Dev 2005; 19:1743 - 1748
  • Mizumoto K, Sawa H. Cortical beta-catenin and APC regulate asymmetric nuclear beta-catenin localization during asymmetric cell division in C. elegans. Dev Cell 2007; 12:287 - 299
  • Hingwing K, Lee S, Nykilchuk L, Walston T, Hardin J, Hawkins N. CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a β-catenin independent Wnt pathway. Dev Biol 2009; 328:245 - 256
  • King RS, Maiden SL, Hawkins NC, Kidd AR 3rd, Kimble J, Hardin J, et al. The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway. Dev Biol 2009; 328:234 - 244
  • Herman MA. Control of cell polarity by noncanonical Wnt signaling in C. elegans. Semin Cell Dev Biol 2002; 13:233 - 241
  • Thorpe CJ, Schlesinger A, Carter JC, Bowerman B. Wnt signaling polarizes an early C, elegans blastomere to distinguish endoderm from mesoderm. Cell 1997; 90:695 - 705
  • Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 2008; 14:140 - 147
  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, et al. A dual-kinase mechanism for Wnt coreceptor phosphorylation and activation. Nature 2005; 438:873 - 877
  • Smelkinson MG, Zhou Q, Kalderon D. Regulation of Ci-SCFSlimb binding, Ci proteolysis and hedgehog pathway activity by Ci phosphorylation. Dev Cell 2007; 13:481 - 495
  • Harms E, Young MW, Saez L. CK1 and GSK3 in the Drosophila and mammalian circadian clock. Novartis Found Symp 2003; 253:267 - 277
  • Sakanaka C. Phosphorylation and regulation of betacatenin by casein kinase I epsilon. J Biochem (Tokyo) 2002; 132:697 - 703
  • Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Wurl PU, et al. The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie 2005; 28:508 - 514
  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403:901 - 906
  • Lin SY, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C, et al. The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003; 4:639 - 650
  • Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 2003; 4:625 - 637
  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 2000; 5:659 - 669
  • Jeon M. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 1999; 286:1141 - 1146
  • Rougvie AE, Ambros V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 1995; 121:2491 - 2500
  • Price M. CKI, there's more than one: Casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 2006; 20:399 - 410
  • Shetty P, Lo MC, Robertson SM, Lin R. C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev Biol 2005; 285:584 - 592
  • Calvo D, Victor M, Gay F, Sui G, Luke MP, Dufourcq P, et al. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO J 2001; 20:7197 - 7208
  • Zinovyeva AY, Yamamoto Y, Sawa H, Forrester WC. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics 2008; 179:1357 - 1371
  • Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis. Cell 2008; 134:646 - 656
  • Gleason JE, Szyleyko EA, Eisenmann DM. Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development. Dev Biol 2006; 298:442 - 457
  • Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M. Nuclear export of the APC tumor suppressor controls beta-catenin function in transcription. EMBO J 2003; 22:1101 - 1113
  • Huang G, Chen S, Li S, Cha J, Long C, Li L, et al. Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. Genes Dev 2007; 21:3283 - 3295
  • Gross SD, Loijens JC, Anderson RA. The casein kinase Ialpha isoform is both physically positioned and functionally competent to regulate multiple events of mRNA metabolism. J Cell Sci 1999; 112:2647 - 2656
  • Haas DW, Hagedorn CH. Casein kinase I phosphorylates the 25 kDa mRNA cap-binding protein. Arch Biochem Biophys 1991; 284:84 - 89
  • Honaker Y, Piwnica-Worms H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene 2031:1 - 11
  • Pal G, Paraz MT, Kellogg DR. Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1. J Cell Biol 2008; 180:931 - 945
  • Kim J, Kawasaki I, Shim YH. cdc-25.2, a C. elegans ortholog of cdc25, is required to promote oocyte maturation. J Cell Sci 2010; 123:993 - 1000
  • Kim J, Lee AR, Kawasaki I, Strome S, Shim YH. A mutation of cdc-25.1 causes defects in germ cells but not in somatic tissues in C. elegans. Mol Cells 2009; 28:43 - 48
  • Kipreos ET. C. elegans cell cycles: Invariance and stem cell divisions. Nat Rev Mol Cell Biol 2005; 6:766 - 776
  • Papoff G, Trivieri N, Crielesi R, Ruberti F, Marsilio S, Ruberti G. FADD-calmodulin interaction: a novel player in cell cycle regulation. Biochim Biophys Acta 2010; 1803:898 - 911
  • Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, et al. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 2005; 19:321 - 332
  • Derry WB, Putzke AP, Rothman JH. Caenorhabditis elegans p53: Role in apoptosis, meiosis and stress resistance. Science 2001; 294:591 - 595
  • Huart AS, MacLaine NJ, Meek DW, Hupp TR. CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem 2009; 284:32384 - 32394
  • Maclaine NJ, Hupp TR. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging (Albany NY) 2009; 1:490 - 502
  • Arden KC. FoxO: Linking new signaling pathways. Mol Cell 2004; 14:416 - 418
  • Katoh M. Human FOX gene family (Review). Int J Oncol 2004; 25:1495 - 1500
  • Regad T, Roth M, Bredenkamp N, Illing N, Papalopulu N. The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat Cell Biol 2007; 9:531 - 540
  • Dupre-Crochet S, Figueroa A, Hogan C, Ferber EC, Bialucha CU, Adams J, et al. Casein kinase 1 is a novel negative regulator of E-cadherin-based cell-cell contacts. Mol Cell Biol 2007; 27:3804 - 3816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.