1,454
Views
63
CrossRef citations to date
0
Altmetric
Short Communication

2-Aminoethyl diphenyl borinate (2-APB) inhibits TRPM7 channels through an intracellular acidification mechanism

, &
Pages 362-369 | Received 08 Jun 2012, Accepted 25 Jul 2012, Published online: 24 Aug 2012

References

  • Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 2000; 287:1647 - 51; http://dx.doi.org/10.1126/science.287.5458.1647; PMID: 10698739
  • Bilmen JG, Michelangeli F. Inhibition of the type 1 inositol 1,4,5-trisphosphate receptor by 2-aminoethoxydiphenylborate. Cell Signal 2002; 14:955 - 60; http://dx.doi.org/10.1016/S0898-6568(02)00042-6; PMID: 12220621
  • Gregory RB, Rychkov G, Barritt GJ. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 2001; 354:285 - 90; http://dx.doi.org/10.1042/0264-6021:3540285; PMID: 11171105
  • Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, Mikoshiba K. 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels 2001; 7:429 - 39; PMID: 11918346
  • Luo D, Broad LM, Bird GS, Putney JW Jr.. Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem 2001; 276:5613 - 21; http://dx.doi.org/10.1074/jbc.M007524200; PMID: 11096083
  • Prakriya M, Lewis RS. Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 2001; 536:3 - 19; http://dx.doi.org/10.1111/j.1469-7793.2001.t01-1-00003.x; PMID: 11579153
  • Dobrydneva Y, Blackmore P. 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol 2001; 60:541 - 52; PMID: 11502886
  • Zhang SL, Kozak JA, Jiang W, Yeromin AV, Chen J, Yu Y, et al. Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J Biol Chem 2008; 283:17662 - 71; http://dx.doi.org/10.1074/jbc.M801536200; PMID: 18420579
  • Bilmen JG, Wootton LL, Godfrey RE, Smart OS, Michelangeli F. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem 2002; 269:3678 - 87; http://dx.doi.org/10.1046/j.1432-1033.2002.03060.x; PMID: 12153564
  • Bai D, del Corsso C, Srinivas M, Spray DC. Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB). J Pharmacol Exp Ther 2006; 319:1452 - 8; http://dx.doi.org/10.1124/jpet.106.112045; PMID: 16985167
  • Ma KT, Guan BC, Yang YQ, Nuttall AL, Jiang ZG. 2-Aminoethoxydiphenyl borate blocks electrical coupling and inhibits voltage-gated K+ channels in guinea pig arteriole cells. Am J Physiol Heart Circ Physiol 2011; 300:H335 - 46; http://dx.doi.org/10.1152/ajpheart.00737.2010; PMID: 21037232
  • Lemonnier L, Prevarskaya N, Mazurier J, Shuba Y, Skryma R. 2-APB inhibits volume-regulated anion channels independently from intracellular calcium signaling modulation. FEBS Lett 2004; 556:121 - 6; http://dx.doi.org/10.1016/S0014-5793(03)01387-5; PMID: 14706838
  • Ma HT, Venkatachalam K, Li HS, Montell C, Kurosaki T, Patterson RL, et al. Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem 2001; 276:18888 - 96; http://dx.doi.org/10.1074/jbc.M100944200; PMID: 11259416
  • Schindl R, Kahr H, Graz I, Groschner K, Romanin C. Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2-aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca(2+) release-activated Ca(2+) channel) channels. J Biol Chem 2002; 277:26950 - 8; http://dx.doi.org/10.1074/jbc.M203700200; PMID: 12011062
  • Prakriya M, Lewis RS. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 2002; 119:487 - 507; http://dx.doi.org/10.1085/jgp.20028551; PMID: 11981025
  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, et al. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 2004; 279:35741 - 8; http://dx.doi.org/10.1074/jbc.M404164200; PMID: 15194687
  • Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 2005; 145:405 - 14; http://dx.doi.org/10.1038/sj.bjp.0706197; PMID: 15806115
  • Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 2006; 127:525 - 37; http://dx.doi.org/10.1085/jgp.200609502; PMID: 16636202
  • Togashi K, Inada H, Tominaga M. Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 2008; 153:1324 - 30; http://dx.doi.org/10.1038/sj.bjp.0707675; PMID: 18204483
  • Callera GE, He Y, Yogi A, Montezano AC, Paravicini T, Yao G, et al. Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 2009; 27:155 - 66; http://dx.doi.org/10.1097/HJH.0b013e3283190582; PMID: 19145781
  • Srikanth S, Yee MK, Gwack Y, Ribalet B. The third transmembrane segment of orai1 protein modulates Ca2+ release-activated Ca2+ (CRAC) channel gating and permeation properties. J Biol Chem 2011; 286:35318 - 28; http://dx.doi.org/10.1074/jbc.M111.265884; PMID: 21865174
  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 2004; 24:5177 - 82; http://dx.doi.org/10.1523/JNEUROSCI.0934-04.2004; PMID: 15175387
  • Xie J, Sun B, Du J, Yang W, Chen HC, Overton JD, et al. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper TRPM6 activity. Sci Rep 2011; 1:146; http://dx.doi.org/10.1038/srep00146; PMID: 22180838
  • Mishra R, Rao V, Ta R, Shobeiri N, Hill CE. Mg2+- and MgATP-inhibited and Ca2+/calmodulin-sensitive TRPM7-like current in hepatoma and hepatocytes. Am J Physiol Gastrointest Liver Physiol 2009; 297:G687 - 94; http://dx.doi.org/10.1152/ajpgi.90683.2008; PMID: 19661151
  • Mason MJ, Schaffner C, Floto RA, Teo QA. Constitutive expression of a Mg2+-inhibited K+ current and a TRPM7-like current in human erythroleukemia cells. Am J Physiol Cell Physiol 2012; 302:C853 - 67; http://dx.doi.org/10.1152/ajpcell.00071.2011; PMID: 22135214
  • Chokshi RH, Matsushita M, Kozak JA. Detailed examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am J Physiol Cell Physiol 2012; 302:C1004 - 11; http://dx.doi.org/10.1152/ajpcell.00422.2011; PMID: 22301056
  • Kozak JA, Matsushita M, Nairn AC, Cahalan MD. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 2005; 126:499 - 514; http://dx.doi.org/10.1085/jgp.200509324; PMID: 16260839
  • Chokshi R, Bennett OR, Matsushita M, Kozak JA. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit TRPM7 channels in human Jurkat T lymphocytes. Biophysical Society 55th Annual Meeting. Baltimore, MD, 2011.
  • Kozak JA, Kerschbaum HH, Cahalan MD. Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 2002; 120:221 - 35; PMID: 12149283
  • Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, et al. TRP channels in lymphocytes. Handbook of experimental pharmacol 2007:445-56.
  • O’Connor N, Silver RB. Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Methods Cell Biol 2007; 81:415 - 33; http://dx.doi.org/10.1016/S0091-679X(06)81019-8; PMID: 17519177
  • Chien EJ, Liao CF, Chang CP, Pu HF, Lu LM, Shie MC, et al. The non-genomic effects on Na+/H+-exchange 1 by progesterone and 20alpha-hydroxyprogesterone in human T cells. J Cell Physiol 2007; 211:544 - 50; http://dx.doi.org/10.1002/jcp.20962; PMID: 17323380
  • Wakabayashi S, Fafournoux P, Sardet C, Pouysségur J. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H(+)-sensing”. Proc Natl Acad Sci U S A 1992; 89:2424 - 8; http://dx.doi.org/10.1073/pnas.89.6.2424; PMID: 1372444
  • Wakabayashi S, Shigekawa M, Pouyssegur J. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 1997; 77:51 - 74; PMID: 9016300
  • Frelin C, Barbry P, Vigne P, Chassande O, Cragoe EJ Jr., Lazdunski M. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie 1988; 70:1285 - 90; http://dx.doi.org/10.1016/0300-9084(88)90196-4; PMID: 2852509
  • Praetorius J, Andreasen D, Jensen BL, Ainsworth MA, Friis UG, Johansen T. NHE1, NHE2, and NHE3 contribute to regulation of intracellular pH in murine duodenal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2000; 278:G197 - 206; PMID: 10666043
  • Deutsch C, Lee SC. Modulation of K+ currents in human lymphocytes by pH. J Physiol 1989; 413:399 - 413; PMID: 2600857
  • Spray DC, Stern JH, Harris AL, Bennett MV. Gap junctional conductance: comparison of sensitivities to H and Ca ions. Proc Natl Acad Sci U S A 1982; 79:441 - 5; http://dx.doi.org/10.1073/pnas.79.2.441; PMID: 6281771
  • Harks EG, Camiña JP, Peters PH, Ypey DL, Scheenen WJ, van Zoelen EJ, et al. Besides affecting intracellular calcium signaling, 2-APB reversibly blocks gap junctional coupling in confluent monolayers, thereby allowing measurement of single-cell membrane currents in undissociated cells. FASEB J 2003; 17:941 - 3; PMID: 12626431
  • Bose DD, Thomas DW. 2-Aminoethoxydiphenyl borate (2-APB) stimulates a conformationally coupled calcium release pathway in the NG115-401L neuronal cell line. Neuropharmacology 2006; 50:532 - 9; http://dx.doi.org/10.1016/j.neuropharm.2005.10.011; PMID: 16325870
  • Bogeski I, Al-Ansary D, Qu B, Niemeyer BA, Hoth M, Peinelt C. Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert Rev Clin Pharmacol 2010; 3:291 - 303; http://dx.doi.org/10.1586/ecp.10.23; PMID: 22111611
  • Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, et al. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca(2+) entry via STIM proteins. Cell Calcium 2010; 47:1 - 10; http://dx.doi.org/10.1016/j.ceca.2009.10.004; PMID: 19945161
  • Hagenston AM, Rudnick ND, Boone CE, Yeckel MF. 2-Aminoethoxydiphenyl-borate (2-APB) increases excitability in pyramidal neurons. Cell Calcium 2009; 45:310 - 7; http://dx.doi.org/10.1016/j.ceca.2008.11.003; PMID: 19100621
  • Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P. Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci 2010; 30:4197 - 209; http://dx.doi.org/10.1523/JNEUROSCI.4187-09.2010; PMID: 20335455
  • Liu H, Li J, Huang Y, Huang C. Inhibition of transient receptor potential melastain 7 channel increases HSCs apoptosis induced by TRAIL. Life Sci 2012; 90:612 - 8; http://dx.doi.org/10.1016/j.lfs.2012.02.012; PMID: 22406504
  • Chokshi R, Matsushita M, Kozak JA. Sensitivity of TRPM7 channels to Mg2+ characterized in cell-free patches of Jurkat T lymphocytes. Am J Physiol Cell Physiol 2012; 302:C1642 - 51; http://dx.doi.org/10.1152/ajpcell.00037.2012; PMID: 22460708

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.