900
Views
18
CrossRef citations to date
0
Altmetric
Review

The intracellular Ca2+ channels of membrane traffic

, , , &
Pages 344-351 | Received 04 Jul 2012, Accepted 03 Aug 2012, Published online: 21 Aug 2012

References

  • Pang ZP, Südhof TC. Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 2010; 22:496 - 505; http://dx.doi.org/10.1016/j.ceb.2010.05.001; PMID: 20561775
  • Groves E, Dart AE, Covarelli V, Caron E. Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 2008; 65:1957 - 76; http://dx.doi.org/10.1007/s00018-008-7578-4; PMID: 18322649
  • Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci 2012; 49:387 - 93; http://dx.doi.org/10.1016/j.mcn.2011.08.006; PMID: 21884797
  • Platta HW, Stenmark H. Endocytosis and signaling. Curr Opin Cell Biol 2011; 23:393 - 403; http://dx.doi.org/10.1016/j.ceb.2011.03.008; PMID: 21474295
  • Valerio LG. Mammalian iron metabolism. Toxicol Mech Methods 2007; 17:497 - 517; http://dx.doi.org/10.1080/15376510701556690; PMID: 20020877
  • Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2012; 125:265 - 75; http://dx.doi.org/10.1242/jcs.091280; PMID: 22357968
  • Raposo G, Fevrier B, Stoorvogel W, Marks MS. Lysosome-related organelles: a view from immunity and pigmentation. Cell Struct Funct 2002; 27:443 - 56; http://dx.doi.org/10.1247/csf.27.443; PMID: 12576637
  • Watts C. The endosome-lysosome pathway and information generation in the immune system. Biochim Biophys Acta 2012; 1824:14 - 21; http://dx.doi.org/10.1016/j.bbapap.2011.07.006; PMID: 21782984
  • Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 2009; 1793:664 - 73; http://dx.doi.org/10.1016/j.bbamcr.2008.07.014; PMID: 18706940
  • Raposo G, Marks MS. The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic 2002; 3:237 - 48; http://dx.doi.org/10.1034/j.1600-0854.2002.030401.x; PMID: 11929605
  • Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 2008; 131:1969 - 78; http://dx.doi.org/10.1093/brain/awm318; PMID: 18187492
  • Barnett A, Brewer GJ. Autophagy in aging and Alzheimer’s disease: pathologic or protective?. J Alzheimers Dis 2011; 25:385 - 94; PMID: 21422527
  • Horan MP, Pichaud N, Ballard JW. Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. J Gerontol A Biol Sci Med Sci 2012; In Press http://dx.doi.org/10.1093/gerona/glr263; PMID: 22459622
  • Kiselyov K, Jennigs JJ Jr., Rbaibi Y, Chu CT. Autophagy, mitochondria and cell death in lysosomal storage diseases. Autophagy 2007; 3:259 - 62; PMID: 17329960
  • Kiselyov K, Yamaguchi S, Lyons CW, Muallem S. Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium 2010; 47:103 - 11; http://dx.doi.org/10.1016/j.ceca.2009.12.007; PMID: 20053447
  • Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5:726 - 34; http://dx.doi.org/10.1038/nrc1692; PMID: 16148885
  • Schneider P, Korolenko TA, Busch U. A review of drug-induced lysosomal disorders of the liver in man and laboratory animals. Microsc Res Tech 1997; 36:253 - 75; http://dx.doi.org/10.1002/(SICI)1097-0029(19970215)36:4<253::AID-JEMT4>3.0.CO;2-N; PMID: 9140926
  • Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010; 11:50 - 61; http://dx.doi.org/10.1038/nrm2820; PMID: 19997129
  • Weisz OA. Organelle acidification and disease. Traffic 2003; 4:57 - 64; http://dx.doi.org/10.1034/j.1600-0854.2003.40201.x; PMID: 12559032
  • Jean S, Kiger AA. Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol 2012; 13:463 - 70; http://dx.doi.org/10.1038/nrm3379; PMID: 22722608
  • Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 2012; 485:465 - 70; http://dx.doi.org/10.1038/nature11133; PMID: 22622570
  • Luzio JP, Pryor PR, Gray SR, Gratian MJ, Piper RC, Bright NA. Membrane traffic to and from lysosomes. Biochem Soc Symp 2005; •••:77 - 86; PMID: 15649132
  • Lang T, Jahn R. Core proteins of the secretory machinery. Handb Exp Pharmacol 2008; 107 - 27; http://dx.doi.org/10.1007/978-3-540-74805-2_5; PMID: 18064413
  • Miedel MT, Rbaibi Y, Guerriero CJ, Colletti G, Weixel KM, Weisz OA, et al. Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J Exp Med 2008; 205:1477 - 90; http://dx.doi.org/10.1084/jem.20072194; PMID: 18504305
  • Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 2000; 149:1053 - 62; http://dx.doi.org/10.1083/jcb.149.5.1053; PMID: 10831609
  • Christensen KA, Myers JT, Swanson JA. pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 2002; 115:599 - 607; PMID: 11861766
  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 2008; 14:1247 - 55; http://dx.doi.org/10.1038/nm.1876; PMID: 18953351
  • Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 2002; 111:703 - 8; http://dx.doi.org/10.1016/S0092-8674(02)01082-6; PMID: 12464181
  • Tapper H, Sundler R. Bafilomycin A1 inhibits lysosomal, phagosomal, and plasma membrane H(+)-ATPase and induces lysosomal enzyme secretion in macrophages. J Cell Physiol 1995; 163:137 - 44; http://dx.doi.org/10.1002/jcp.1041630116; PMID: 7896890
  • Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991; 266:17707 - 12; PMID: 1832676
  • Morgan AJ, Galione A. NAADP induces pH changes in the lumen of acidic Ca2+ stores. Biochem J 2007; 402:301 - 10; http://dx.doi.org/10.1042/BJ20060759; PMID: 17117921
  • Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 1998; 23:33 - 42; http://dx.doi.org/10.1247/csf.23.33; PMID: 9639028
  • Cavallini L, Coassin M, Alexandre A. Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin. Biochem J 1995; 310:449 - 52; PMID: 7654182
  • Rosado JA. Acidic Ca(2+) stores in platelets. Cell Calcium 2011; 50:168 - 74; http://dx.doi.org/10.1016/j.ceca.2010.11.011; PMID: 21167599
  • Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3; http://dx.doi.org/10.1101/cshperspect.a004184; PMID: 21441596
  • Baron S, Vangheluwe P, Sepúlveda MR, Wuytack F, Raeymaekers L, Vanoevelen J. The secretory pathway Ca(2+)-ATPase 1 is associated with cholesterol-rich microdomains of human colon adenocarcinoma cells. Biochim Biophys Acta 2010; 1798:1512 - 21; http://dx.doi.org/10.1016/j.bbamem.2010.03.023; PMID: 20363212
  • Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, Shcheynikov N, et al. TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 2005; 280:43218 - 23; http://dx.doi.org/10.1074/jbc.M508210200; PMID: 16257972
  • Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S. The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 2009; 10:1157 - 67; http://dx.doi.org/10.1111/j.1600-0854.2009.00924.x; PMID: 19522758
  • Zbidi H, Jardin I, Bartegi A, Salido GM, Rosado JA. Ca2+ leakage rate from agonist-sensitive intracellular pools is altered in platelets from patients with type 2 diabetes. Platelets 2011; 22:284 - 93; http://dx.doi.org/10.3109/09537104.2010.528813; PMID: 21526890
  • Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2009; 2:ra23; http://dx.doi.org/10.1126/scisignal.2000278; PMID: 19454650
  • Starkus JG, Fleig A, Penner R. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol 2010; 588:1227 - 40; http://dx.doi.org/10.1113/jphysiol.2010.187476; PMID: 20194125
  • Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, Fleig A, et al. Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J 2011; 25:3529 - 42; http://dx.doi.org/10.1096/fj.10-178483; PMID: 21753080
  • Sumoza-Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signalling. J Physiol 2011; 589:1515 - 25; http://dx.doi.org/10.1113/jphysiol.2010.201855; PMID: 21135052
  • Heiner I, Eisfeld J, Lückhoff A. Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 2003; 33:533 - 40; http://dx.doi.org/10.1016/S0143-4160(03)00058-7; PMID: 12765698
  • Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium 2010; 47:122 - 9; http://dx.doi.org/10.1016/j.ceca.2010.01.003; PMID: 20167368
  • Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y. Roles of TRPM2 in oxidative stress. Cell Calcium 2011; 50:279 - 87; http://dx.doi.org/10.1016/j.ceca.2011.04.006; PMID: 21616534
  • Colletti GA, Kiselyov K. Trpml1. Adv Exp Med Biol 2011; 704:209 - 19; http://dx.doi.org/10.1007/978-94-007-0265-3_11; PMID: 21290297
  • Zeevi DA, Frumkin A, Bach G. TRPML and lysosomal function. Biochim Biophys Acta 2007; 1772:851 - 8; http://dx.doi.org/10.1016/j.bbadis.2007.01.004; PMID: 17306511
  • Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, et al. Identification of the gene causing mucolipidosis type IV. Nat Genet 2000; 26:118 - 23; http://dx.doi.org/10.1038/79095; PMID: 10973263
  • Acierno JS Jr., Kennedy JC, Falardeau JL, Leyne M, Bromley MC, Colman MW, et al. A physical and transcript map of the MCOLN1 gene region on human chromosome 19p13.3-p13.2. Genomics 2001; 73:203 - 10; http://dx.doi.org/10.1006/geno.2001.6526; PMID: 11318610
  • Bach G, Cohen MM, Kohn G. Abnormal ganglioside accumulation in cultured fibroblasts from patients with mucolipidosis IV. Biochem Biophys Res Commun 1975; 66:1483 - 90; http://dx.doi.org/10.1016/0006-291X(75)90526-4; PMID: 1191304
  • Tellez-Nagel I, Rapin I, Iwamoto T, Johnson AB, Norton WT, Nitowsky H. Mucolipidosis IV. Clinical, ultrastructural, histochemical, and chemical studies of a case, including a brain biopsy. Arch Neurol 1976; 33:828 - 35; http://dx.doi.org/10.1001/archneur.1976.00500120032005; PMID: 187156
  • Puertollano R, Kiselyov K. TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 2009; 296:F1245 - 54; http://dx.doi.org/10.1152/ajprenal.90522.2008; PMID: 19158345
  • Cheng X, Shen D, Samie M, Xu H. Mucolipins: Intracellular TRPML1-3 channels. FEBS Lett 2010; 584:2013 - 21; http://dx.doi.org/10.1016/j.febslet.2009.12.056; PMID: 20074572
  • Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, Lyons CW, Quinn J, et al. TRPML: transporters of metals in lysosomes essential for cell survival?. Cell Calcium 2011; 50:288 - 94; http://dx.doi.org/10.1016/j.ceca.2011.04.009; PMID: 21621258
  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S. Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem 2007; 282:36138 - 42; http://dx.doi.org/10.1074/jbc.C700190200; PMID: 17962195
  • Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, García-Añoveros J. The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci U S A 2008; 105:353 - 8; http://dx.doi.org/10.1073/pnas.0707963105; PMID: 18162548
  • Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, et al. A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A 2007; 104:19583 - 8; http://dx.doi.org/10.1073/pnas.0709846104; PMID: 18048323
  • Kim HJ, Yamaguchi S, Li Q, So I, Muallem S. Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem 2010; 285:16513 - 20; http://dx.doi.org/10.1074/jbc.M109.078204; PMID: 20378547
  • Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 2012; 3:731; http://dx.doi.org/10.1038/ncomms1735; PMID: 22415822
  • Xu H, Delling M, Li L, Dong X, Clapham DE. Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci U S A 2007; 104:18321 - 6; http://dx.doi.org/10.1073/pnas.0709096104; PMID: 17989217
  • Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 2008; 455:992 - 6; http://dx.doi.org/10.1038/nature07311; PMID: 18794901
  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, et al. A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 2008; 27:1197 - 205; http://dx.doi.org/10.1038/emboj.2008.56; PMID: 18369318
  • Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, et al. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 2006; 281:7294 - 301; http://dx.doi.org/10.1074/jbc.M508211200; PMID: 16361256
  • Chandra M, Zhou H, Li Q, Muallem S, Hofmann SL, Soyombo AA. A role for the Ca2+ channel TRPML1 in gastric acid secretion, based on analysis of knockout mice. Gastroenterology 2011; 140:857 - 67; http://dx.doi.org/10.1053/j.gastro.2010.11.040; PMID: 21111738
  • Kiselyov K, Soyombo A, Muallem S. TRPpathies. J Physiol 2007; 578:641 - 53; http://dx.doi.org/10.1113/jphysiol.2006.119024; PMID: 17138610
  • Miedel MT, Rbaibi Y, Guerriero CJ, Colletti G, Weixel KM, Weisz OA, et al. Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J Exp Med 2008; 205:1477 - 90; http://dx.doi.org/10.1084/jem.20072194; PMID: 18504305
  • Thompson EG, Schaheen L, Dang H, Fares H. Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol 2007; 8:54; http://dx.doi.org/10.1186/1471-2121-8-54; PMID: 18154673
  • Martina JA, Lelouvier B, Puertollano R. The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 2009; 10:1143 - 56; http://dx.doi.org/10.1111/j.1600-0854.2009.00935.x; PMID: 19497048
  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 2009; 459:596 - 600; http://dx.doi.org/10.1074/jbc.M110.190694; PMID: 21321120
  • Lee HC, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 1995; 270:2152 - 7; http://dx.doi.org/10.1074/jbc.270.5.2152; PMID: 7836444
  • Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, et al. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 2009; 186:201 - 9; http://dx.doi.org/10.1083/jcb.200904073; PMID: 19620632
  • Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rötzer K, et al. The two-pore channel TPCN2 mediates NAADP-dependent Ca(2+)-release from lysosomal stores. Pflugers Arch 2009; 458:891 - 9; http://dx.doi.org/10.1007/s00424-009-0690-y; PMID: 19557428
  • Brailoiu E, Hooper R, Cai X, Brailoiu GC, Keebler MV, Dun NJ, et al. An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J Biol Chem 2010; 285:2897 - 901; http://dx.doi.org/10.1074/jbc.C109.081943; PMID: 19940116
  • Brailoiu E, Rahman T, Churamani D, Prole DL, Brailoiu GC, Hooper R, et al. An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J Biol Chem 2010; 285:38511 - 6; http://dx.doi.org/10.1074/jbc.M110.162073; PMID: 20880839
  • Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C, Han SW, et al. Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 2011; 286:27875 - 81; http://dx.doi.org/10.1074/jbc.C110.216580; PMID: 21610076
  • Petersen OH, Tepikin AV. Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 2008; 70:273 - 99; http://dx.doi.org/10.1146/annurev.physiol.70.113006.100618; PMID: 17850212
  • Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, et al. Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. J Biol Chem 2011; 286:22934 - 42; http://dx.doi.org/10.1074/jbc.M110.210930; PMID: 21540176
  • Rybalchenko V, Ahuja M, Coblentz J, Churamani D, Patel S, Kiselyov K, et al. Membrane potential regulates nicotinic acid adenine dinucleotide phosphate (NAADP) dependence of the pH- and Ca2+-sensitive organellar two-pore channel TPC1. J Biol Chem 2012; 287:20407 - 16; http://dx.doi.org/10.1074/jbc.M112.359612; PMID: 22500018
  • Hedrich R, Marten I. TPC1-SV channels gain shape. Mol Plant 2011; 4:428 - 41; http://dx.doi.org/10.1093/mp/ssr017; PMID: 21459829
  • Guse AH, Lee HC. NAADP: a universal Ca2+ trigger. Sci Signal 2008; 1:re10; http://dx.doi.org/10.1126/scisignal.144re10; PMID: 18984909
  • Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, et al. Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking. Curr Biol 2010; 20:703 - 9; http://dx.doi.org/10.1016/j.cub.2010.02.049; PMID: 20346675
  • Zhang X, Li X, Xu H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proceedings of the National Academy of Sciences of the United States of America (2012).
  • Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, et al. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 2010; 285:35039 - 46; http://dx.doi.org/10.1074/jbc.M110.156927; PMID: 20720007
  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, et al. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 2005; 434:404 - 8; http://dx.doi.org/10.1038/nature03381; PMID: 15772667
  • Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J, Schönknecht G. Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels. Planta 2004; 219:1057 - 70; http://dx.doi.org/10.1007/s00425-004-1293-7; PMID: 15605179
  • Dadacz-Narloch B, Beyhl D, Larisch C, López-Sanjurjo EJ, Reski R, Kuchitsu K, et al. A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 2011; 23:2696 - 707; http://dx.doi.org/10.1105/tpc.111.086751; PMID: 21764990
  • Cancela JM, Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J 2000; 19:2549 - 57; http://dx.doi.org/10.1093/emboj/19.11.2549; PMID: 10835353
  • Churchill GC, Galione A. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J 2001; 20:2666 - 71; http://dx.doi.org/10.1093/emboj/20.11.2666; PMID: 11387201
  • Koivusalo M, Steinberg BE, Mason D, Grinstein S. In situ measurement of the electrical potential across the lysosomal membrane using FRET. Traffic 2011; 12:972 - 82; http://dx.doi.org/10.1111/j.1600-0854.2011.01215.x; PMID: 21554506
  • Sonawane ND, Thiagarajah JR, Verkman AS. Chloride concentration in endosomes measured using a ratioable fluorescent Cl- indicator: evidence for chloride accumulation during acidification. J Biol Chem 2002; 277:5506 - 13; http://dx.doi.org/10.1074/jbc.M110818200; PMID: 11741919
  • Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, et al. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Science 2010; 328:1401 - 3; http://dx.doi.org/10.1126/science.1188072; PMID: 20430974
  • Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ, et al. A cation counterflux supports lysosomal acidification. J Cell Biol 2010; 189:1171 - 86; http://dx.doi.org/10.1083/jcb.200911083; PMID: 20566682

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.