2,742
Views
134
CrossRef citations to date
0
Altmetric
Review

Voltage-gated sodium channels and metastatic disease

Pages 352-361 | Received 14 Aug 2012, Accepted 21 Aug 2012, Published online: 01 Sep 2012

References

  • Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 1992; 72:S15 - 48; PMID: 1332090
  • Brackenbury WJ, Isom LL. Na Channel β Subunits: Overachievers of the Ion Channel Family. Front Pharmacol 2011; 2:53; http://dx.doi.org/10.3389/fphar.2011.00053; PMID: 22007171
  • Hille B. Ionic channels of excitable membranes. Sunderland (Massachusetts): Sinauer Associates Inc., 1992.
  • Brackenbury WJ, Isom LL. Voltage-gated Na+ channels: potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 2008; 12:1191 - 203; http://dx.doi.org/10.1517/14728222.12.9.1191; PMID: 18694383
  • Brackenbury WJ, Djamgoz MB, Isom LL. An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 2008; 14:571 - 83; http://dx.doi.org/10.1177/1073858408320293; PMID: 18940784
  • Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26:13 - 25; http://dx.doi.org/10.1016/S0896-6273(00)81133-2; PMID: 10798388
  • Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003; 1616:107 - 11; http://dx.doi.org/10.1016/j.bbamem.2003.07.001; PMID: 14561467
  • Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005; 11:5381 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-05-0327; PMID: 16061851
  • Diaz D, Delgadillo DM, Hernández-Gallegos E, Ramírez-Domínguez ME, Hinojosa LM, Ortiz CS, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 2007; 210:469 - 78; http://dx.doi.org/10.1002/jcp.20871; PMID: 17051596
  • Hernandez-Plata E, Ortiz CS, Marquina-Castillo B, Medina-Martinez I, Alfaro A, Berumen J, et al. Overexpression of NaV 1.6 channels is associated with the invasion capacity of human cervical cancer. Int J Cancer 2012; 130:2013 - 23; http://dx.doi.org/10.1002/ijc.26210; PMID: 21630263
  • House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 2010; 70:6957 - 67; http://dx.doi.org/10.1158/0008-5472.CAN-10-1169; PMID: 20651255
  • Carrithers MD, Chatterjee G, Carrithers LM, Offoha R, Iheagwara U, Rahner C, et al. Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem 2009; 284:8114 - 26; http://dx.doi.org/10.1074/jbc.M801892200; PMID: 19136557
  • Allen DH, Lepple-Wienhues A, Cahalan MD. Ion channel phenotype of melanoma cell lines. J Membr Biol 1997; 155:27 - 34; http://dx.doi.org/10.1007/s002329900155; PMID: 9002422
  • Fulgenzi G, Graciotti L, Faronato M, Soldovieri MV, Miceli F, Amoroso S, et al. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol 2006; 38:1146 - 59; http://dx.doi.org/10.1016/j.biocel.2005.12.003; PMID: 16458569
  • Ou SW, Kameyama A, Hao LY, Horiuchi M, Minobe E, Wang WY, et al. Tetrodotoxin-resistant Na+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A. Eur J Neurosci 2005; 22:793 - 801; http://dx.doi.org/10.1111/j.1460-9568.2005.04280.x; PMID: 16115203
  • Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol 2007; 39:774 - 86; http://dx.doi.org/10.1016/j.biocel.2006.12.007; PMID: 17307016
  • Gao R, Shen Y, Cai J, Lei M, Wang Z. Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep 2010; 23:1293 - 9; PMID: 20372843
  • Diss JK, Archer SN, Hirano J, Fraser SP, Djamgoz MB. Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate 2001; 48:165 - 78; http://dx.doi.org/10.1002/pros.1095; PMID: 11494332
  • Laniado ME, Lalani EN, Fraser SP, Grimes JA, Bhangal G, Djamgoz MB, et al. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997; 150:1213 - 21; PMID: 9094978
  • Smith P, Rhodes NP, Shortland AP, Fraser SP, Djamgoz MB, Ke Y, et al. Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Lett 1998; 423:19 - 24; http://dx.doi.org/10.1016/S0014-5793(98)00050-7; PMID: 9506834
  • Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995; 369:290 - 4; http://dx.doi.org/10.1016/0014-5793(95)00772-2; PMID: 7649275
  • Onganer PU, Djamgoz MB. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na(+) channel expression in vitro. J Membr Biol 2005; 204:67 - 75; http://dx.doi.org/10.1007/s00232-005-0747-6; PMID: 16151702
  • Blandino JK, Viglione MP, Bradley WA, Oie HK, Kim YI. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. J Membr Biol 1995; 143:153 - 63; http://dx.doi.org/10.1007/BF00234661; PMID: 7731034
  • Joshi AD, Parsons DW, Velculescu VE, Riggins GJ. Sodium ion channel mutations in glioblastoma patients correlate with shorter survival. Mol Cancer 2011; 10:17; http://dx.doi.org/10.1186/1476-4598-10-17; PMID: 21314958
  • Schrey M, Codina C, Kraft R, Beetz C, Kalff R, Wölfl S, et al. Molecular characterization of voltage-gated sodium channels in human gliomas. Neuroreport 2002; 13:2493 - 8; http://dx.doi.org/10.1097/00001756-200212200-00023; PMID: 12499855
  • Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni AM, George AJ, et al. T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEBS Lett 2004; 569:191 - 4; http://dx.doi.org/10.1016/j.febslet.2004.05.063; PMID: 15225632
  • Yamashita N, Hamada H, Tsuruo T, Ogata E. Enhancement of voltage-gated Na+ channel current associated with multidrug resistance in human leukemia cells. Cancer Res 1987; 47:3736 - 41; PMID: 2439197
  • Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, et al. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 2005; 8:266 - 73; http://dx.doi.org/10.1038/sj.pcan.4500796; PMID: 16088330
  • Onganer PU, Seckl MJ, Djamgoz MB. Neuronal characteristics of small-cell lung cancer. Br J Cancer 2005; 93:1197 - 201; http://dx.doi.org/10.1038/sj.bjc.6602857; PMID: 16265346
  • Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL, et al. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat 2012; 134:603 - 15; http://dx.doi.org/10.1007/s10549-012-2102-9; PMID: 22678159
  • Clare JJ, Tate SN, Nobbs M, Romanos MA. Voltage-gated sodium channels as therapeutic targets. Drug Discov Today 2000; 5:506 - 20; http://dx.doi.org/10.1016/S1359-6446(00)01570-1; PMID: 11084387
  • Diss JK, Fraser SP, Djamgoz MB. Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 2004; 33:180 - 93; http://dx.doi.org/10.1007/s00249-004-0389-0; PMID: 14963621
  • Onkal R, Mattis JH, Fraser SP, Diss JK, Shao D, Okuse K, et al. Alternative splicing of Nav1.5: an electrophysiological comparison of ‘neonatal’ and ‘adult’ isoforms and critical involvement of a lysine residue. J Cell Physiol 2008; 216:716 - 26; http://dx.doi.org/10.1002/jcp.21451; PMID: 18393272
  • Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene 2001; 20:8085 - 91; http://dx.doi.org/10.1038/sj.onc.1205088; PMID: 11781821
  • Bennett ES, Smith BA, Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch 2004; 447:908 - 14; http://dx.doi.org/10.1007/s00424-003-1205-x; PMID: 14677067
  • Diss JK, Fraser SP, Walker MM, Patel A, Latchman DS, Djamgoz MB. Beta-subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. Prostate Cancer Prostatic Dis 2008; 11:325 - 33; http://dx.doi.org/10.1038/sj.pcan.4501012; PMID: 17893701
  • Jansson KH, Lynch JE, Lepori-Bui N, Czymmek KJ, Duncan RL, Sikes RA. Overexpression of the VSSC-associated CAM, β-2, enhances LNCaP cell metastasis associated behavior. Prostate 2012; 72:1080 - 92; http://dx.doi.org/10.1002/pros.21512; PMID: 22127840
  • Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel β1 subunit. Int J Biochem Cell Biol 2009; 41:1216 - 27; http://dx.doi.org/10.1016/j.biocel.2008.11.001; PMID: 19041953
  • Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MB. Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res 1999; 295:505 - 12; http://dx.doi.org/10.1007/s004410051256; PMID: 10022970
  • Mycielska M, Madeja Z, Fraser SP, Korohoda W, Korohoda W, Djamgoz MBA. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J Cell Sci 2001; 114:2697 - 705; PMID: 11683396
  • Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195:479 - 87; http://dx.doi.org/10.1002/jcp.10312; PMID: 12704658
  • Brackenbury WJ, Chioni AM, Diss JK, Djamgoz MB. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2007; 101:149 - 60; http://dx.doi.org/10.1007/s10549-006-9281-1; PMID: 16838113
  • Brackenbury WJ, Djamgoz MB. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol 2006; 573:343 - 56; http://dx.doi.org/10.1113/jphysiol.2006.106906; PMID: 16543264
  • Uysal-Onganer P, Djamgoz MB. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel. Mol Cancer 2007; 6:76; http://dx.doi.org/10.1186/1476-4598-6-76; PMID: 18036246
  • Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003; 195:461 - 9; http://dx.doi.org/10.1002/jcp.10265; PMID: 12704656
  • Krasowska M, Grzywna ZJ, Mycielska ME, Djamgoz MB. Patterning of endocytic vesicles and its control by voltage-gated Na+ channel activity in rat prostate cancer cells: fractal analyses. Eur Biophys J 2004; 33:535 - 42; http://dx.doi.org/10.1007/s00249-004-0394-3; PMID: 15024523
  • Krasowska M, Grzywna ZJ, Mycielska ME, Djamgoz MB. Fractal analysis and ionic dependence of endocytotic membrane activity of human breast cancer cells. Eur Biophys J 2009; 38:1115 - 25; http://dx.doi.org/10.1007/s00249-009-0516-z; PMID: 19618177
  • Palmer CP, Mycielska ME, Burcu H, Osman K, Collins T, Beckerman R, et al. Single cell adhesion measuring apparatus (SCAMA): application to cancer cell lines of different metastatic potential and voltage-gated Na+ channel expression. Eur Biophys J 2008; 37:359 - 68; http://dx.doi.org/10.1007/s00249-007-0219-2; PMID: 17879092
  • Mycielska ME, Palmer CP, Brackenbury WJ, Djamgoz MB. Expression of Na+-dependent citrate transport in a strongly metastatic human prostate cancer PC-3M cell line: regulation by voltage-gated Na+ channel activity. J Physiol 2005; 563:393 - 408; http://dx.doi.org/10.1113/jphysiol.2004.079491; PMID: 15611019
  • Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206 - 19; http://dx.doi.org/10.1016/j.ejphar.2009.08.040; PMID: 19835862
  • Andrikopoulos P, Fraser SP, Patterson L, Ahmad Z, Burcu H, Ottaviani D, et al. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2011; 286:16846 - 60; http://dx.doi.org/10.1074/jbc.M110.187559; PMID: 21385874
  • Gillet L, Roger S, Besson P, Lecaille F, Gore J, Bougnoux P, et al. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J Biol Chem 2009; 284:8680 - 91; http://dx.doi.org/10.1074/jbc.M806891200; PMID: 19176528
  • Nakajima T, Kubota N, Tsutsumi T, Oguri A, Imuta H, Jo T, et al. Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br J Pharmacol 2009; 156:420 - 31; http://dx.doi.org/10.1111/j.1476-5381.2008.00059.x; PMID: 19154441
  • Abdul M, Hoosein N. Inhibition by anticonvulsants of prostate-specific antigen and interleukin-6 secretion by human prostate cancer cells. Anticancer Res 2001; 21:2045 - 8; PMID: 11497296
  • Kunzelmann K. Ion channels and cancer. J Membr Biol 2005; 205:159 - 73; http://dx.doi.org/10.1007/s00232-005-0781-4; PMID: 16362504
  • Brackenbury WJ, Calhoun JD, Chen C, Miyazaki H, Nukina N, Oyama F, et al. Functional reciprocity between Na+ channel Nav1.6 and β1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci USA 2010; 107:2283 - 8; http://dx.doi.org/10.1073/pnas.0909434107; PMID: 20133873
  • Crill WE. Persistent sodium current in mammalian central neurons. Annu Rev Physiol 1996; 58:349 - 62; http://dx.doi.org/10.1146/annurev.ph.58.030196.002025; PMID: 8815799
  • Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 1996; 497:337 - 47; PMID: 8961179
  • Brisson L, Gillet L, Calaghan S, Besson P, Le Guennec JY, Roger S, et al. Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H(+) efflux in caveolae. Oncogene 2011; 30:2070 - 6; http://dx.doi.org/10.1038/onc.2010.574; PMID: 21170089
  • Carrithers MD, Dib-Hajj S, Carrithers LM, Tokmoulina G, Pypaert M, Jonas EA, et al. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J Immunol 2007; 178:7822 - 32; PMID: 17548620
  • Lopez-Santiago LF, Meadows LS, Ernst SJ, Chen C, Malhotra JD, McEwen DP, et al. Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J Mol Cell Cardiol 2007; 43:636 - 47; http://dx.doi.org/10.1016/j.yjmcc.2007.07.062; PMID: 17884088
  • Tolón RM, Sánchez-Franco F, López Fernández J, Lorenzo MJ, Vázquez GF, Cacicedo L. Regulation of somatostatin gene expression by veratridine-induced depolarization in cultured fetal cerebrocortical cells. Brain Res Mol Brain Res 1996; 35:103 - 10; http://dx.doi.org/10.1016/0169-328X(95)00188-X; PMID: 8717345
  • Dravid SM, Baden DG, Murray TF. Brevetoxin activation of voltage-gated sodium channels regulates Ca dynamics and ERK1/2 phosphorylation in murine neocortical neurons. J Neurochem 2004; 89:739 - 49; http://dx.doi.org/10.1111/j.1471-4159.2004.02407.x; PMID: 15086530
  • Fekete A, Franklin L, Ikemoto T, Rózsa B, Lendvai B, Sylvester Vizi E, et al. Mechanism of the persistent sodium current activator veratridine-evoked Ca elevation: implication for epilepsy. J Neurochem 2009; 111:745 - 56; http://dx.doi.org/10.1111/j.1471-4159.2009.06368.x; PMID: 19719824
  • Lo WL, Donermeyer DL, Allen PM. A voltage-gated sodium channel is essential for the positive selection of CD4(+) T cells. Nat Immunol 2012; 13:880 - 7; http://dx.doi.org/10.1038/ni.2379; PMID: 22842345
  • Andrikopoulos P, Baba A, Matsuda T, Djamgoz MB, Yaqoob MM, Eccles SA. Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 2011; 286:37919 - 31; http://dx.doi.org/10.1074/jbc.M111.251777; PMID: 21873429
  • Davis TH, Chen C, Isom LL. Sodium channel β1 subunits promote neurite outgrowth in cerebellar granule neurons. J Biol Chem 2004; 279:51424 - 32; http://dx.doi.org/10.1074/jbc.M410830200; PMID: 15452131
  • Brackenbury WJ, Davis TH, Chen C, Slat EA, Detrow MJ, Dickendesher TL, et al. Voltage-gated Na+ channel β1 subunit-mediated neurite outgrowth requires fyn kinase and contributes to central nervous system development in vivo. J Neurosci 2008; 28:3246 - 56; http://dx.doi.org/10.1523/JNEUROSCI.5446-07.2008; PMID: 18354028
  • Lopez-Santiago LF, Pertin M, Morisod X, Chen C, Hong S, Wiley J, et al. Sodium channel beta2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J Neurosci 2006; 26:7984 - 94; http://dx.doi.org/10.1523/JNEUROSCI.2211-06.2006; PMID: 16870743
  • Chen C, Westenbroek RE, Xu X, Edwards CA, Sorenson DR, Chen Y, et al. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 2004; 24:4030 - 42; http://dx.doi.org/10.1523/JNEUROSCI.4139-03.2004; PMID: 15102918
  • Kim DY, Carey BW, Wang H, Ingano LA, Binshtok AM, Wertz MH, et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat Cell Biol 2007; 9:755 - 64; http://dx.doi.org/10.1038/ncb1602; PMID: 17576410
  • Adachi K, Toyota M, Sasaki Y, Yamashita T, Ishida S, Ohe-Toyota M, et al. Identification of SCN3B as a novel p53-inducible proapoptotic gene. Oncogene 2004; 23:7791 - 8; http://dx.doi.org/10.1038/sj.onc.1208067; PMID: 15334053
  • Abriel H. Cardiac sodium channel Na(v)1.5 and interacting proteins: Physiology and pathophysiology. J Mol Cell Cardiol 2010; 48:2 - 11; http://dx.doi.org/10.1016/j.yjmcc.2009.08.025; PMID: 19744495
  • Ding Y, Djamgoz MB. Serum concentration modifies amplitude and kinetics of voltage-gated Na+ current in the Mat-LyLu cell line of rat prostate cancer. Int J Biochem Cell Biol 2004; 36:1249 - 60; http://dx.doi.org/10.1016/j.biocel.2003.10.010; PMID: 15109569
  • Ding Y, Brackenbury WJ, Onganer PU, Montano X, Porter LM, Bates LF, et al. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity. J Cell Physiol 2008; 215:77 - 81; http://dx.doi.org/10.1002/jcp.21289; PMID: 17960590
  • Brackenbury WJ, Djamgoz MB. Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol 2007; 210:602 - 8; http://dx.doi.org/10.1002/jcp.20846; PMID: 17149708
  • Fraser SP, Ozerlat-Gunduz I, Onkal R, Diss JK, Latchman DS, Djamgoz MB. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol 2010; 224:527 - 39; http://dx.doi.org/10.1002/jcp.22154; PMID: 20432453
  • Chioni AM, Shao D, Grose R, Djamgoz MB. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol 2010; 42:346 - 58; http://dx.doi.org/10.1016/j.biocel.2009.11.021; PMID: 19948241
  • Yildirim S, Altun S, Gumushan H, Patel A, Djamgoz MB. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett 2012; 323:58 - 61; http://dx.doi.org/10.1016/j.canlet.2012.03.036; PMID: 22484465
  • Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 2008; 109:180 - 7; http://dx.doi.org/10.1097/ALN.0b013e31817f5b73; PMID: 18648226
  • Walker AJ, Card T, Bates TE, Muir K. Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br J Cancer 2011; 104:193 - 7; http://dx.doi.org/10.1038/sj.bjc.6605996; PMID: 21081933
  • Yip D, Le MN, Chan JL, Lee JH, Mehnert JA, Yudd A, et al. A phase 0 trial of riluzole in patients with resectable stage III and IV melanoma. Clin Cancer Res 2009; 15:3896 - 902; http://dx.doi.org/10.1158/1078-0432.CCR-08-3303; PMID: 19458050
  • Speyer CL, Smith JS, Banda M, DeVries JA, Mekani T, Gorski DH. Metabotropic glutamate receptor-1: a potential therapeutic target for the treatment of breast cancer. Breast Cancer Res Treat 2012; 132:565 - 73; http://dx.doi.org/10.1007/s10549-011-1624-x; PMID: 21681448
  • Batcioglu K, Uyumlu AB, Satilmis B, Yildirim B, Yucel N, Demirtas H, et al. Oxidative Stress in the in vivo DMBA Rat Model of Breast Cancer: Suppression by a Voltage-gated Sodium Channel Inhibitor (RS100642). Basic Clin Pharmacol Toxicol 2012; 111:137 - 41; PMID: 22429688
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69 - 90; http://dx.doi.org/10.3322/caac.20107; PMID: 21296855
  • Rugo HS. The importance of distant metastases in hormone-sensitive breast cancer. Breast 2008; 17:S3 - 8; http://dx.doi.org/10.1016/S0960-9776(08)70002-X; PMID: 18279764
  • Suva LJ, Griffin RJ, Makhoul I. Mechanisms of bone metastases of breast cancer. Endocr Relat Cancer 2009; 16:703 - 13; http://dx.doi.org/10.1677/ERC-09-0012; PMID: 19443538
  • Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994; 12:1183 - 94; http://dx.doi.org/10.1016/0896-6273(94)90436-7; PMID: 7516685
  • Patino GA, Brackenbury WJ, Bao Y, Lopez-Santiago LF, O’Malley HA, Chen C, et al. Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy. J Neurosci 2011; 31:14577 - 91; http://dx.doi.org/10.1523/JNEUROSCI.0361-11.2011; PMID: 21994374
  • Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, et al. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 2002; 417:653 - 6; http://dx.doi.org/10.1038/nature00781; PMID: 12050667
  • Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 1997; 17:7330 - 8; PMID: 9295379
  • Numann R, Catterall WA, Scheuer T. Functional modulation of brain sodium channels by protein kinase C phosphorylation. Science 1991; 254:115 - 8; http://dx.doi.org/10.1126/science.1656525; PMID: 1656525
  • Lemaillet G, Walker B, Lambert S. Identification of a conserved ankyrin-binding motif in the family of sodium channel alpha subunits. J Biol Chem 2003; 278:27333 - 9; http://dx.doi.org/10.1074/jbc.M303327200; PMID: 12716895
  • Wu L, Yong SL, Fan C, Ni Y, Yoo S, Zhang T, et al. Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5. J Biol Chem 2008; 283:6968 - 78; http://dx.doi.org/10.1074/jbc.M709721200; PMID: 18184654
  • Liu Cj, Dib-Hajj SD, Waxman SG. Fibroblast growth factor homologous factor 1B binds to the C terminus of the tetrodotoxin-resistant sodium channel rNav1.9a (NaN). J Biol Chem 2001; 276:18925 - 33; http://dx.doi.org/10.1074/jbc.M101606200; PMID: 11376006
  • Deschênes I, Neyroud N, DiSilvestre D, Marbán E, Yue DT, Tomaselli GF. Isoform-specific modulation of voltage-gated Na(+) channels by calmodulin. Circ Res 2002; 90:E49 - 57; http://dx.doi.org/10.1161/01.RES.0000012502.92751.E6; PMID: 11884381
  • van Bemmelen MX, Rougier JS, Gavillet B, Apothéloz F, Daidié D, Tateyama M, et al. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 2004; 95:284 - 91; http://dx.doi.org/10.1161/01.RES.0000136816.05109.89; PMID: 15217910
  • Abriel H, Kamynina E, Horisberger JD, Staub O. Regulation of the cardiac voltage-gated Na+ channel (H1) by the ubiquitin-protein ligase Nedd4. FEBS Lett 2000; 466:377 - 80; http://dx.doi.org/10.1016/S0014-5793(00)01098-X; PMID: 10682864
  • Gee SH, Madhavan R, Levinson SR, Caldwell JH, Sealock R, Froehner SC. Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 1998; 18:128 - 37; PMID: 9412493
  • Gavillet B, Rougier JS, Domenighetti AA, Behar R, Boixel C, Ruchat P, et al. Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ Res 2006; 99:407 - 14; http://dx.doi.org/10.1161/01.RES.0000237466.13252.5e; PMID: 16857961
  • Srinivasan J, Schachner M, Catterall WA. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc Natl Acad Sci USA 1998; 95:15753 - 7; http://dx.doi.org/10.1073/pnas.95.26.15753; PMID: 9861042
  • Xiao ZC, Ragsdale DS, Malhotra JD, Mattei LN, Braun PE, Schachner M, et al. Tenascin-R is a functional modulator of sodium channel beta subunits. J Biol Chem 1999; 274:26511 - 7; http://dx.doi.org/10.1074/jbc.274.37.26511; PMID: 10473612
  • Kazarinova-Noyes K, Malhotra JD, McEwen DP, Mattei LN, Berglund EO, Ranscht B, et al. Contactin associates with Na+ channels and increases their functional expression. J Neurosci 2001; 21:7517 - 25; PMID: 11567041
  • Malhotra JD, Thyagarajan V, Chen C, Isom LL. Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem 2004; 279:40748 - 54; http://dx.doi.org/10.1074/jbc.M407243200; PMID: 15272007
  • McEwen DP, Isom LL. Heterophilic interactions of sodium channel beta1 subunits with axonal and glial cell adhesion molecules. J Biol Chem 2004; 279:52744 - 52; http://dx.doi.org/10.1074/jbc.M405990200; PMID: 15466474
  • Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, Scheuer T, et al. A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase beta. Nat Neurosci 2000; 3:437 - 44; http://dx.doi.org/10.1038/74805; PMID: 10769382
  • Merrick EC, Kalmar CL, Snyder SL, Cusdin FS, Yu EJ, Sando JJ, et al. The importance of serine 161 in the sodium channel beta3 subunit for modulation of Na(V)1.2 gating. Pflugers Arch 2010; 460:743 - 53; http://dx.doi.org/10.1007/s00424-009-0739-y; PMID: 19806359
  • Wong HK, Sakurai T, Oyama F, Kaneko K, Wada K, Miyazaki H, et al. beta subunits of voltage-gated sodium channels are novel substrates of BACE1 and gamma -secretase. J Biol Chem 2005; 280:23009 - 17; http://dx.doi.org/10.1074/jbc.M414648200; PMID: 15824102
  • Kim DY, Ingano LA, Carey BW, Pettingell WH, Kovacs DM. Presenilin/gamma-secretase-mediated cleavage of the voltage-gated sodium channel beta2-subunit regulates cell adhesion and migration. J Biol Chem 2005; 280:23251 - 61; http://dx.doi.org/10.1074/jbc.M412938200; PMID: 15833746
  • Diss JK, Stewart D, Fraser SP, Black JA, Dib-Hajj S, Waxman SG, et al. Expression of skeletal muscle-type voltage-gated Na+ channel in rat and human prostate cancer cell lines. FEBS Lett 1998; 427:5 - 10; http://dx.doi.org/10.1016/S0014-5793(98)00378-0; PMID: 9613589
  • Patino GA, Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci Lett 2010; 486:53 - 9; http://dx.doi.org/10.1016/j.neulet.2010.06.050; PMID: 20600605
  • Malhotra JD, Kazen-Gillespie K, Hortsch M, Isom LL. Sodium channel β subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J Biol Chem 2000; 275:11383 - 8; http://dx.doi.org/10.1074/jbc.275.15.11383; PMID: 10753953

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.