527
Views
14
CrossRef citations to date
0
Altmetric
Mini Review

RLM3, a potential adaptor between specific TIR-NB-LRR receptors and DZC proteins

&
Pages 59-61 | Received 05 Jun 2008, Accepted 05 Jun 2008, Published online: 30 Sep 2008

References

  • Tauger M. Entitlement, shortage and the 1943 Bengal Famine: Another look. J Peasant Studies 2003; 31:45 - 72
  • Maor R, Shirasu K. The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 2005; 8:399 - 404
  • OECD-FAO Agricultural outlook 2007–2016. 2007; OECD publishing ISBN: 9789264025097.
  • Alfano J, Collmer A. Bacterial pathogens in plants: life up against the wall. Plant Cell 1996; 8:1683 - 1698
  • Denby K, Kumar P, Kliebenstein D. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 2004; 38:473 - 486
  • Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005; 43:205 - 227
  • Oliver R, Ipcho S. Arabidopsis pathology breathes life into the necrotroph-vs-biotrophs classification of fungal pathogens. Mol Plant Pathol 2004; 5:347 - 352
  • Fitt B, Brun H, Barbetti M, Rimmer S. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 2006; 114:3 - 15
  • Staal J, Kaliff M, Bohman S, Dixelius C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J 2006; 46:218 - 230
  • Saal B, Struss D. RGA- and RAPD-derived SCAR markers for Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Theor Appl Genet 2005; 111:281 - 290
  • Elliot C, Harjono Howlett B. Mutation of a gene in the fungus Leptosphaeria maculans allows increased frequency of penetration of stomatal apertures of Arabidopsis thaliana. Mol Plant 2008; E-pub.
  • Bohman S, Staal J, Thomma BPHJ, Wang M, Dixelius C. Characterisation of an Arabidopsis—Leptosphaeria maculans pathosystem; resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 2004; 37:9 - 20
  • Kaliff M, Staal J, Myrenås M, Dixelius C. ABA is required for Leptosphaeria maculans resistance via ABI1 and ABI4 dependent signaling. Mol Plant-Microbe Interact 2007; 20:335 - 345
  • Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C. RLM3, a TIR domain-encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 2008; E-pub.
  • Juenger T, Wayne T, Boles S, Symonds V, McKay J, Coughlan S. Natural genetic variation in whole-genome expression in Arabidopsis thaliana: the impact of physiological QTL introgression. Mol Ecol 2006; 15:1351 - 1365
  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NB-LRR-encoding genes in Arabidopsis. Plant Cell 2003; 15:809 - 834
  • Meyers BC, Morgante M, Michelmore RW. TIR-X and TIR-NB proteins: two new families related to disease resistance TIR-NB-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 2002; 32:77 - 92
  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner J. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 2001; 291:118 - 120
  • Wang W, Devoto A, Turner J, Xiao S. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant Microbe Interact 2007; 20:966 - 976
  • Zhang XC, Gassmann W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 2003; 15:2333 - 2342
  • Zhang XC, Gassmann W. Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 2007; 145:1577 - 1587
  • Briggs G, Mouchel C, Hardtke C. Characterization of the plant-specific BREVIS RADIX gene family reveals limited genetic redundancy despite high sequence conservation. Plant Physiol 2006; 140:1306 - 1316
  • Staal J, Dixelius C. Tracing the ancient origins of plant innate immunity. Trends Plant Sci 2007; 12:334 - 342
  • Chen G, Zhuchenko O, Kuspa A. Immune-like phagocyte activity in the social amoeba. Science 2007; 317:678 - 681
  • Heras B, Dröbak B. PARF-1: an Arabidopsis thaliana FYVE-domain protein displaying a novel eukaryotic domain structure and phosphoinositide affinity. J Exp Bot 2002; 53:565 - 567
  • Mouchel C, Briggs G, Hardtke C. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 2004; 18:700 - 714
  • Zhou P, Bogacki R, McReynolds L, Howley P. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell 2000; 6:751 - 756
  • Kim M, da Cunha L, McFall A, Belkhadir Y, DebRoy S, Dangl J, Mackey D. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 2005; 121:749 - 759
  • Kaliff M. Genes, hormones and signalling pathways implicated in plant defence to Leptosphaeria maculans. Doctoral diss. Dept. of Plant Biology and Forest Genetics, SLU. Acta Universitatis agriculturae Sueciae 2007; 119