557
Views
5
CrossRef citations to date
0
Altmetric
Article Addendum

Accelerated bang recovery in Drosophila genderblind mutants

, &
Pages 14-17 | Received 16 Jun 2008, Accepted 17 Jun 2008, Published online: 01 Jul 2008

References

  • Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 1999; 274:11455 - 11458
  • Sato H, Tamba M, Kuriyama-Matsumura K, Okuno S, Bannai S. Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc. Antioxid Redox Signal 2000; 2:665 - 671
  • Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, et al. Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta 2001; 1512:335 - 344
  • Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Saeki S, et al. Enhancement of L-cystine transport activity and its relation to xCT gene induction at the blood-brain barrier by diethyl maleate treatment. J Pharmacol Exp Ther 2002; 302:225 - 231
  • Kanai Y, Endou H. Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab 2001; 2:339 - 354
  • Sato H, Tamba M, Okuno S, Sato K, Keino-Masu K, et al. et al. Distribution of cystine/glutamate exchange transporter, system x(c)-, in the mouse brain. J Neurosci 2002; 22:8028 - 8033
  • Fernandez E, Jimenez-Vidal M, Calvo M, Zorzano A, Tebar F, et al. The structural and functional units of heteromeric amino acid transporters. The heavy subunit rBAT dictates oligomerization of the heteromeric amino acid transporters. J Biol Chem 2006; 281:26552 - 26561
  • Wagner CA, Lang F, Broer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 2001; 281:1077 - 1093
  • Chillaron J, Roca R, Valencia A, Zorzano A, Palacin M. Heteromeric amino acid transporters: biochemistry, genetics and physiology. Am J Physiol Renal Physiol 2001; 281:995 - 1018
  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, et al. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2004; 447:532 - 542
  • Palacin M, Nunes V, Font-Llitjos M, Jimenez-Vidal M, Fort J, et al. The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 2005; 20:112 - 124
  • Bannai S, Christensen HN, Vadgama JV, Ellory JC, Englesberg E, et al. Amino acid transport systems. Nature 1984; 311:308
  • Bannai S, Ishii T. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effect of glutamate and homocysteate. J Cell Physiol 1982; 112:265 - 272
  • Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 1990; 70:43 - 77
  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22:9134 - 9141
  • Augustin H, Grosjean Y, Chen K, Sheng Q, Featherstone DE. Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo. J Neurosci 2007; 27:111 - 123
  • Piyankarage SC, Augustin H, Grosjean Y, Featherstone DE, Shippy SA. Hemolymph amino acid analysis of individual Drosophila larvae. Anal Chem 2008; 80:1201 - 1207
  • Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, et al. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 2005; 25:7101 - 7110
  • Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, et al. Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 2008; 14:629 - 632
  • Sontheimer H. A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 2008; 105:287 - 295
  • Baker DA, McFarland K, Lake RW, Shen H, Tang XC, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 2003; 6:743 - 749
  • Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25:6389 - 6393
  • Baker DA, Madayag A, Kristiansen LV, Meador-Woodruff JH, Haroutunian V, Raju I. Contribution of cystine-glutamate antiporters to the psychotomimetic effects of phencyclidine. Neuropsychopharmacology 33:1760 - 1772
  • Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 2007; 14:171 - 181
  • Grosjean Y, Grillet M, Augustin H, Ferveur JF, Featherstone DE. A glial amino-acid transporter controls synapse strength and courtship in Drosophila. Nat Neurosci 2008; 11:54 - 61
  • Daniels RW, Gelfand MV, Collins CA, DiAntonio A. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J Comp Neurol 2008; 508:131 - 152
  • Kolodziejczyk A, Sun X, Meinertzhagen IA, Nassel DR. Glutamate, GABA and acetyl-choline signaling components in the lamina of the Drosophila visual system. PLoS ONE 2008; 3:2110
  • Devaud JM, Clouet-Redt C, Bockaert J, Grau Y, Parmentier ML. Widespread brain distribution of the Drosophila metabotropic glutamate receptor. Neuroreport 2008; 19:367 - 371
  • Benzer S. From the gene to behavior. Jama 1971; 218:1015 - 1022
  • Fergestad T, Olson L, Patel KP, Miller R, Palladino MJ, et al. Neuropathology in Drosophila mutants with increased seizure susceptibility. Genetics 2008; 178:947 - 956
  • Ganetzky B, Wu CF. Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics 1982; 100:597 - 614
  • Grigliatti TA, Hall L, Rosenbluth R, Suzuki DT. Temperature-sensitive mutations in Drosophila melanogaster XIV. A selection of immobile adults. Mol Gen Genet 1973; 120:107 - 114
  • Homyk T Jr, Szidonya J, Suzuki DT. Behavioral mutants of Drosophila melanogaster III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes. Mol Gen Genet 1980; 177:553 - 565
  • Kuebler D, Tanouye MA. Modifications of seizure susceptibility in Drosophila. J Neurophysiol 2000; 83:998 - 1009
  • Gargano JW, Martin I, Bhandari P, Grotewiel MS. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 2005; 40:386 - 395
  • Ferri SL, Bohm RA, Lincicome HE, Hall JC, Villella A. fruitless Gene products truncated of their male-like qualities promote neural and behavioral maleness in Drosophila if these proteins are produced in the right places at the right times. J Neurogenet 2008; 22:17 - 55