290
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Co-regulation of the arf-activation cycle and phospholipid-signaling during golgi maturation

, &
Pages 12-15 | Published online: 01 Jan 2012

References

  • Quatela SE, Philips MR. Ras signaling on the Golgi. Curr Opin Cell Biol 2006; 18:162 - 7; http://dx.doi.org/10.1016/j.ceb.2006.02.004; PMID: 16488589
  • De Matteis MA, Morrow JS. The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol 1998; 10:542 - 9; http://dx.doi.org/10.1016/S0955-0674(98)80071-9; PMID: 9719877
  • Stow JL, Heimann K. Vesicle budding on Golgi membranes: regulation by G proteins and myosin motors. Biochim Biophys Acta 1998; 1404:161 - 71; http://dx.doi.org/10.1016/S0167-4889(98)00055-X; PMID: 9714787
  • Dunphy WG, Fries E, Urbani LJ, Rothman JE. Early and late functions associated with the Golgi apparatus reside in distinct compartments. Proc Natl Acad Sci U S A 1981; 78:7453 - 7; http://dx.doi.org/10.1073/pnas.78.12.7453; PMID: 6801652
  • Young WW Jr.. Organization of Golgi glycosyltransferases in membranes: complexity via complexes. J Membr Biol 2004; 198:1 - 13; http://dx.doi.org/10.1007/s00232-004-0656-5; PMID: 15209092
  • Wooding S, Pelham HR. The dynamics of golgi protein traffic visualized in living yeast cells. Mol Biol Cell 1998; 9:2667 - 80; PMID: 9725919
  • Pelham HR, Rothman JE. The debate about transport in the Golgi--two sides of the same coin?. Cell 2000; 102:713 - 9; http://dx.doi.org/10.1016/S0092-8674(00)00060-X; PMID: 11030615
  • Rabouille C, Klumperman J. Opinion: The maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 2005; 6:812 - 7; http://dx.doi.org/10.1038/nrm1735; PMID: 16167055
  • Marsh BJ, Howell KE. The mammalian Golgi--complex debates. Nat Rev Mol Cell Biol 2002; 3:789 - 95; http://dx.doi.org/10.1038/nrm933; PMID: 12360195
  • Elsner M, Hashimoto H, Nilsson T. Cisternal maturation and vesicle transport: join the band wagon! (Review). [Review] Mol Membr Biol 2003; 20:221 - 9; http://dx.doi.org/10.1080/0968768031000114024; PMID: 12893530
  • Kartberg F, Elsner M, Froderberg L, Asp L, Nilsson T. Commuting between Golgi cisternae–mind the GAP! Biochim Biophys Acta 2005; 1744:351-63.
  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 2004; 6:1071 - 81; http://dx.doi.org/10.1038/ncb1180; PMID: 15502824
  • Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS. Golgi maturation visualized in living yeast. Nature 2006; 441:1002 - 6; http://dx.doi.org/10.1038/nature04717; PMID: 16699524
  • Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A. Live imaging of yeast Golgi cisternal maturation. Nature 2006; 441:1007 - 10; http://dx.doi.org/10.1038/nature04737; PMID: 16699523
  • Jackson CL, Casanova JE. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 2000; 10:60 - 7; http://dx.doi.org/10.1016/S0962-8924(99)01699-2; PMID: 10652516
  • Gloor Y, Schöne M, Habermann B, Ercan E, Beck M, Weselek G, et al. Interaction between Sec7p and Pik1p: the first clue for the regulation of a coincidence detection signal. Eur J Cell Biol 2010; 89:575 - 83; http://dx.doi.org/10.1016/j.ejcb.2010.02.004; PMID: 20434792
  • Audhya A, Foti M, Emr SD. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 2000; 11:2673 - 89; PMID: 10930462
  • Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21:205 - 15; http://dx.doi.org/10.1016/0092-8674(80)90128-2; PMID: 6996832
  • Walch-Solimena C, Novick P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1999; 1:523 - 5; http://dx.doi.org/10.1038/70319; PMID: 10587649
  • Peyroche A, Courbeyrette R, Rambourg A, Jackson CL. The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci 2001; 114:2241 - 53; PMID: 11493664
  • Spang A, Herrmann JM, Hamamoto S, Schekman R. The ADP ribosylation factor-nucleotide exchange factors Gea1p and Gea2p have overlapping, but not redundant functions in retrograde transport from the Golgi to the endoplasmic reticulum. Mol Biol Cell 2001; 12:1035 - 45; PMID: 11294905
  • Deitz SB, Rambourg A, Képès F, Franzusoff A. Sec7p directs the transitions required for yeast Golgi biogenesis. Traffic 2000; 1:172 - 83; http://dx.doi.org/10.1034/j.1600-0854.2000.010209.x; PMID: 11208097
  • Wolf J, Nicks M, Deitz S, van Tuinen E, Franzusoff A. An N-end rule destabilization mutant reveals pre-Golgi requirements for Sec7p in yeast membrane traffic. Biochem Biophys Res Commun 1998; 243:191 - 8; http://dx.doi.org/10.1006/bbrc.1998.8084; PMID: 9473503
  • Park SK, Hartnell LM, Jackson CL. Mutations in a highly conserved region of the Arf1p activator GEA2 block anterograde Golgi transport but not COPI recruitment to membranes. Mol Biol Cell 2005; 16:3786 - 99; http://dx.doi.org/10.1091/mbc.E05-04-0289; PMID: 15930122
  • Jedd G, Mulholland J, Segev N. Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 1997; 137:563 - 80; http://dx.doi.org/10.1083/jcb.137.3.563; PMID: 9151665
  • Demmel L, Gravert M, Ercan E, Habermann B, Müller-Reichert T, Kukhtina V, et al. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 2008; 19:1991 - 2002; http://dx.doi.org/10.1091/mbc.E06-10-0937; PMID: 18287542