1,089
Views
39
CrossRef citations to date
0
Altmetric
Mini Review

Novel roles for GlcNAc in cell signaling

, , &
Pages 156-159 | Published online: 01 Mar 2012

References

  • Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer?. Trends Biochem Sci 2010; 35:547 - 55; http://dx.doi.org/10.1016/j.tibs.2010.04.005; PMID: 20466550
  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011; 80:825 - 58; http://dx.doi.org/10.1146/annurev-biochem-060608-102511; PMID: 21391816
  • Simonetti N, Strippoli V, Cassone A. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature 1974; 250:344 - 6; http://dx.doi.org/10.1038/250344a0; PMID: 4605454
  • Reedy JL, Floyd AM, Heitman J. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 2009; 19:891 - 9; http://dx.doi.org/10.1016/j.cub.2009.04.058; PMID: 19446455
  • Pérez-Campo FM, Domínguez A. Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol 2001; 43:429 - 33; http://dx.doi.org/10.1007/s002840010333; PMID: 11685511
  • Castilla R, Passeron S, Cantore ML. N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal 1998; 10:713 - 9; http://dx.doi.org/10.1016/S0898-6568(98)00015-1; PMID: 9884022
  • Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, et al. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 2001; 42:673 - 87; http://dx.doi.org/10.1046/j.1365-2958.2001.02672.x; PMID: 11722734
  • Gunasekera A, Alvarez FJ, Douglas LM, Wang HX, Rosebrock AP, Konopka JB. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z. Eukaryot Cell 2010; 9:1476 - 83; http://dx.doi.org/10.1128/EC.00178-10; PMID: 20675577
  • Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog 2010; 6:e1000806; http://dx.doi.org/10.1371/journal.ppat.1000806; PMID: 20300604
  • Kumar MJ, Jamaluddin MS, Natarajan K, Kaur D, Datta A. The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1. Proc Natl Acad Sci U S A 2000; 97:14218 - 23; http://dx.doi.org/10.1073/pnas.250452997; PMID: 11114181
  • Yamada-Okabe T, Sakamori Y, Mio T, Yamada-Okabe H. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans. Eur J Biochem 2001; 268:2498 - 505; http://dx.doi.org/10.1046/j.1432-1327.2001.02135.x; PMID: 11298769
  • Shepherd MG, Sullivan PA. The control of morphogenesis in Candida albicans. J Dent Res 1984; 63:435 - 40; http://dx.doi.org/10.1177/00220345840630031501; PMID: 6366000
  • Alvarez FJ, Konopka JB. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 2007; 18:965 - 75; http://dx.doi.org/10.1091/mbc.E06-10-0931; PMID: 17192409
  • Breidenbach MA, Gallagher JE, King DS, Smart BP, Wu P, Bertozzi CR. Targeted metabolic labeling of yeast N-glycans with unnatural sugars. Proc Natl Acad Sci U S A 2010; 107:3988 - 93; http://dx.doi.org/10.1073/pnas.0911247107; PMID: 20142501
  • Naseem S, Gunasekera A, Araya E, Konopka JB. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. J Biol Chem 2011; 286:28671 - 80; http://dx.doi.org/10.1074/jbc.M111.249854; PMID: 21700702
  • Milewski S, Gabriel I, Olchowy J. Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast 2006; 23:1 - 14; http://dx.doi.org/10.1002/yea.1337; PMID: 16408321
  • Sellick CA, Reece RJ. Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 2005; 30:405 - 12; http://dx.doi.org/10.1016/j.tibs.2005.05.007; PMID: 15950477
  • Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 2008; 32:673 - 704; http://dx.doi.org/10.1111/j.1574-6976.2008.00117.x; PMID: 18559076
  • Doyle RJ, Chaloupka J, Vinter V. Turnover of cell walls in microorganisms. Microbiol Rev 1988; 52:554 - 67; PMID: 3070324
  • Moussian B. The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:215 - 26; http://dx.doi.org/10.1016/j.cbpb.2007.10.009; PMID: 18032081
  • Korgaonkar AK, Whiteley M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 2011; 193:909 - 17; http://dx.doi.org/10.1128/JB.01175-10; PMID: 21169497
  • Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 2006; 61:1237 - 51; http://dx.doi.org/10.1111/j.1365-2958.2006.05319.x; PMID: 16925557
  • Barnhart MM, Lynem J, Chapman MR. GlcNAc-6P levels modulate the expression of Curli fibers by Escherichia coli. J Bacteriol 2006; 188:5212 - 9; http://dx.doi.org/10.1128/JB.00234-06; PMID: 16816193
  • Sohanpal BK, El-Labany S, Lahooti M, Plumbridge JA, Blomfield IC. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc Natl Acad Sci U S A 2004; 101:16322 - 7; http://dx.doi.org/10.1073/pnas.0405821101; PMID: 15534208
  • Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 2004; 101:7427 - 32; http://dx.doi.org/10.1073/pnas.0307888101; PMID: 15123798
  • Plumbridge JA. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Mol Microbiol 1991; 5:2053 - 62; http://dx.doi.org/10.1111/j.1365-2958.1991.tb00828.x; PMID: 1766379
  • Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428:281 - 6; http://dx.doi.org/10.1038/nature02362; PMID: 15029187
  • Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008; 4:28 - 39; http://dx.doi.org/10.1016/j.chom.2008.05.014; PMID: 18621008
  • Hogan DA, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 2002; 296:2229 - 32; http://dx.doi.org/10.1126/science.1070784; PMID: 12077418
  • Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 2004; 54:1212 - 23; http://dx.doi.org/10.1111/j.1365-2958.2004.04349.x; PMID: 15554963
  • Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, Hogan DA. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007; 65:896 - 906; http://dx.doi.org/10.1111/j.1365-2958.2007.05840.x; PMID: 17640272
  • Jarosz LM, Ovchinnikova ES, Meijler MM, Krom BP. Microbial spy games and host response: roles of a Pseudomonas aeruginosa small molecule in communication with other species. PLoS Pathog 2011; 7:e1002312; http://dx.doi.org/10.1371/journal.ppat.1002312; PMID: 22114549
  • Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial-fungal interactions. Nat Rev Microbiol 2010; 8:340 - 9; http://dx.doi.org/10.1038/nrmicro2313; PMID: 20348933