423
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

Neural correlates of unpredictability in behavioral patterns of wild-type and R6/2 mice

, &
Pages 259-261 | Published online: 01 May 2012

References

  • Vonsattel JPG, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998; 57:369 - 84; http://dx.doi.org/10.1097/00005072-199805000-00001; PMID: 9596408
  • Bolam JP, Hanley JJ, Booth PAC, Bevan MD. Synaptic organisation of the basal ganglia. J Anat 2000; 196:527 - 42; http://dx.doi.org/10.1046/j.1469-7580.2000.19640527.x; PMID: 10923985
  • Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV. Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. J Neurophysiol 2008; 100:2205 - 16; http://dx.doi.org/10.1152/jn.90606.2008; PMID: 18667541
  • Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011; 198:252 - 73; http://dx.doi.org/10.1016/j.neuroscience.2011.08.052; PMID: 21907762
  • Rebec GV, Barton SJ, Marseilles AM, Collins K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport 2003; 14:1263 - 5; http://dx.doi.org/10.1097/00001756-200307010-00015; PMID: 12824772
  • Hong SL, Barton SJ, Rebec GV. Altered Neural and Behavioral Dynamics in Huntington’s Disease: An Entropy Conservation Approach. PLoS One 2012; 7:e30879; http://dx.doi.org/10.1371/journal.pone.0030879; PMID: 22292068
  • Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 2010; 11:760 - 72; http://dx.doi.org/10.1038/nrn2915; PMID: 20944662
  • Mandell AJ, Selz KA. Entropy conservation as Tμ≈λ+dμ in neurobiological dynamical systems. Chaos 1997; 7:67 - 81; http://dx.doi.org/10.1063/1.166241; PMID: 12779638
  • Smotherman WP, Selz KA, Mandell AJ. Dynamical entropy is conserved during cocaine-induced changes in fetal rat motor patterns. Psychoneuroendocrinology 1996; 21:173 - 87; http://dx.doi.org/10.1016/0306-4530(95)00040-2; PMID: 8774061
  • Heuninckx S, Wenderoth N, Swinnen SP. Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci 2008; 28:91 - 9; http://dx.doi.org/10.1523/JNEUROSCI.3300-07.2008; PMID: 18171926
  • Garrett DD, Kovacevic N, McIntosh AR, Grady CL. The importance of being variable. J Neurosci 2011; 31:4496 - 503; http://dx.doi.org/10.1523/JNEUROSCI.5641-10.2011; PMID: 21430150
  • Hong SL. The entropy conservation principle: applications in ergonomics and human factors. Nonlinear Dynamics Psychol Life Sci 2010; 14:291 - 315; PMID: 20587303
  • Hong SL, Newell KM. Entropy conservation in the control of human action. Nonlinear Dynamics Psychol Life Sci 2008; 12:163 - 90; PMID: 18384715
  • Breakspear M, McIntosh AR. Networks, noise and models: reconceptualizing the brain as a complex, distributed system. Neuroimage 2011; 58:293 - 5; http://dx.doi.org/10.1016/j.neuroimage.2011.03.056; PMID: 21447393
  • McIntosh AR, Kovacevic N, Lippe S, Garrett D, Grady C, Jirsa V. The development of a noisy brain. Arch Ital Biol 2010; 148:323 - 37; PMID: 21175017