356
Views
2
CrossRef citations to date
0
Altmetric
Mini Review

Brain activation and the locus of visual awareness

Pages 265-267 | Received 28 Jan 2009, Accepted 30 Jan 2009, Published online: 15 Jun 2009

References

  • Hubel D, Wiesel T. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 1977; 198:1 - 59
  • Crick F, Koch C. Are we aware of neural activity in primary visual cortex?. Nature 1995; 375:121 - 123
  • He S, Cavanagh P, Intriligator J. Attentional resolution and the locus of visual awareness. Nature 1996; 383:334 - 337
  • Gur M, Snodderly DM. A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Vis Res 1997; 37:377 - 382
  • Haynes JD, Rees G. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 2005; 8:686 - 691
  • Leopold DA, Logothetis NK. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 1996; 379:549 - 553
  • Logothetis NK, Schall JD. Neuronal correlates of subjective visual perception. Science 1989; 245:761 - 763
  • Sheinberg DL, Logothetis NK. The role of temporal cortical areas in perceptual organization. Proc Natl Acad Sci USA 1997; 94:3408 - 3413
  • Zeki S, Watson JD, Frackowiak RS. Going beyond the information given: the relation of illusory visual motion to brain activity. Proc Biol Sci Royal Soc 1993; 252:215 - 222
  • Huk AC, Ress D, Heeger DJ. Neuronal basis of the motion aftereffect reconsidered. Neuron 2001; 32:161 - 172
  • Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 1995; 375:139 - 141
  • Muckli L, Kriegeskorte N, Lanfermann H, Zanella FE, Singer W, Goebel R. Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and states. J Neurosci 2002; 22:219
  • Moutoussis K, Keliris G, Kourtzi Z, Logothetis N. A binocular rivalry study of motion perception in the human brain. Vis Res 2005; 45:2231 - 2243
  • Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 1996; 13:87 - 100
  • Polonsky A, Blake R, Braun J, Heeger DJ. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 2000; 3:1153 - 1159
  • Tong F, Engel SA. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 2001; 411:195 - 199
  • Haynes JD, Rees G. Predicting the stream of consciousness from activity in human visual cortex. Curr Biol 2005; 15:1301 - 1307
  • Lennie P. Single units and visual cortical organization. Perception 1998; 27:889 - 935
  • Blake R, Tadin D, Sobel KV, Raissian TA, Chong SC. Strength of early visual adaptation depends on visual awareness. Proc Natl Acad Sci USA 2006; 103:4783 - 4788
  • Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997; 17:4302 - 4311
  • Tong F, Nakayama K, Vaughan JT, Kanwisher N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 1998; 21:753 - 759
  • Moutoussis K, Zeki S. The relationship between cortical activation and perception investigated with invisible stimuli. Proc Natl Acad Sci USA 2002; 99:9527 - 9532
  • Moutoussis K, Zeki S. Seeing invisible motion: a human fMRI study. Curr Biol 2006; 16:574 - 579
  • Zeki SM. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 1974; 236:549 - 573
  • Ilg UJ, Churan J. Motion perception without explicit activity in areas MT and MST. J Neurophysiol 2004; 92:1512 - 1523