696
Views
19
CrossRef citations to date
0
Altmetric
Review

Plasmodium falciparum RuvB proteins

Emerging importance and expectations beyond cell cycle progression

&
Pages 350-361 | Published online: 01 Jul 2012

References

  • Tuteja R. Genome wide identification of Plasmodium falciparum helicases: a comparison with human host. Cell Cycle 2010; 9:104 - 20; http://dx.doi.org/10.4161/cc.9.1.10241; PMID: 20016272
  • Qiu XB, Lin YL, Thome KC, Pian P, Schlegel BP, Weremowicz S, et al. An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 1998; 273:27786 - 93; http://dx.doi.org/10.1074/jbc.273.43.27786; PMID: 9774387
  • Lim CR, Kimata Y, Ohdate H, Kokubo T, Kikuchi N, Horigome T, et al. The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription. J Biol Chem 2000; 275:22409 - 17; http://dx.doi.org/10.1074/jbc.M001031200; PMID: 10787406
  • Seigneur M, Bidnenko V, Ehrlich SD, Michel B. RuvAB acts at arrested replication forks. Cell 1998; 95:419 - 30; http://dx.doi.org/10.1016/S0092-8674(00)81772-9; PMID: 9814711
  • Izumi N, Yamashita A, Iwamatsu A, Kurata R, Nakamura H, Saari B, et al. AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Sci Signal 2010; 3:ra27; http://dx.doi.org/10.1126/scisignal.2000468; PMID: 20371770
  • Xie X, Chen Y, Xue P, Fan Y, Deng Y, Peng G, et al. RUVBL2, a novel AS160-binding protein, regulates insulin-stimulated GLUT4 translocation. Cell Res 2009; 19:1090 - 7; http://dx.doi.org/10.1038/cr.2009.68; PMID: 19532121
  • Watkins NJ, Lemm I, Ingelfinger D, Schneider C, Hossbach M, Urlaub H, et al. Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 2004; 16:789 - 98; http://dx.doi.org/10.1016/j.molcel.2004.11.012; PMID: 15574333
  • Huen J, Kakihara Y, Ugwu F, Cheung KL, Ortega J, Houry WA. Rvb1-Rvb2: essential ATP-dependent helicases for critical complexes. Biochem Cell Biol 2010; 88:29 - 40; http://dx.doi.org/10.1139/O09-122; PMID: 20130677
  • Wood MA, McMahon SB, Cole MD. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 2000; 5:321 - 30; http://dx.doi.org/10.1016/S1097-2765(00)80427-X; PMID: 10882073
  • Jha S, Dutta A. RVB1/RVB2: running rings around molecular biology. Mol Cell 2009; 34:521 - 33; http://dx.doi.org/10.1016/j.molcel.2009.05.016; PMID: 19524533
  • Noedl H, Socheat D, Satimai W. Artemisinin-resistant malaria in Asia. N Engl J Med 2009; 361:540 - 1; http://dx.doi.org/10.1056/NEJMc0900231; PMID: 19641219
  • Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, et al. Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 2010; 8:272 - 80; http://dx.doi.org/10.1038/nrmicro2385; PMID: 20208550
  • Baird JK. Effectiveness of antimalarial drugs. N Engl J Med 2005; 352:1565 - 77; http://dx.doi.org/10.1056/NEJMra043207; PMID: 15829537
  • Rosenthal PJ. Artesunate for the treatment of severe falciparum malaria. N Engl J Med 2008; 358:1829 - 36; http://dx.doi.org/10.1056/NEJMct0709050; PMID: 18434652
  • Li W, Zeng J, Li Q, Zhao L, Liu T, Björkholm M, et al. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol Cancer 2010; 9:132; http://dx.doi.org/10.1186/1476-4598-9-132; PMID: 20509972
  • Ménard L, Taras D, Grigoletto A, Haurie V, Nicou A, Dugot-Senant N, et al. In vivo silencing of Reptin blocks the progression of human hepatocellular carcinoma in xenografts and is associated with replicative senescence. J Hepatol 2010; 52:681 - 9; http://dx.doi.org/10.1016/j.jhep.2009.12.029; PMID: 20346530
  • Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999; 9:27 - 43; PMID: 9927482
  • Iwasaki H, Han YW, Okamoto T, Ohnishi T, Yoshikawa M, Yamada K, et al. Mutational analysis of the functional motifs of RuvB, an AAA+ class helicase and motor protein for holliday junction branch migration. Mol Microbiol 2000; 36:528 - 38; http://dx.doi.org/10.1046/j.1365-2958.2000.01842.x; PMID: 10844644
  • Shiba T, Iwasaki H, Nakata A, Shinagawa H. Escherichia coli RuvA and RuvB proteins involved in recombination repair: physical properties and interactions with DNA. Mol Gen Genet 1993; 237:395 - 9; PMID: 8483454
  • Mitchell AH, West SC. Hexameric rings of Escherichia coli RuvB protein. Cooperative assembly, processivity and ATPase activity. J Mol Biol 1994; 243:208 - 15; http://dx.doi.org/10.1006/jmbi.1994.1648; PMID: 7932751
  • Miyata T, Yamada K, Iwasaki H, Shinagawa H, Morikawa K, Mayanagi K. Two different oligomeric states of the RuvB branch migration motor protein as revealed by electron microscopy. J Struct Biol 2000; 131:83 - 9; http://dx.doi.org/10.1006/jsbi.2000.4290; PMID: 11042078
  • Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 2007; 366:179 - 92; http://dx.doi.org/10.1016/j.jmb.2006.11.030; PMID: 17157868
  • Niewiarowski A, Bradley AS, Gor J, McKay AR, Perkins SJ, Tsaneva IR. Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Biochem J 2010; 429:113 - 25; http://dx.doi.org/10.1042/BJ20100489; PMID: 20412048
  • Torreira E, Jha S, López-Blanco JR, Arias-Palomo E, Chacón P, Cañas C, et al. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure 2008; 16:1511 - 20; http://dx.doi.org/10.1016/j.str.2008.08.009; PMID: 18940606
  • Gribun A, Cheung KL, Huen J, Ortega J, Houry WA. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 2008; 376:1320 - 33; http://dx.doi.org/10.1016/j.jmb.2007.12.049; PMID: 18234224
  • Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A, et al. Structural and functional insights into a dodecameric molecular machine—the RuvBL1/RuvBL2 complex. J Struct Biol 2011; 176:279 - 91; http://dx.doi.org/10.1016/j.jsb.2011.09.001; PMID: 21933716
  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000; 102:463 - 73; http://dx.doi.org/10.1016/S0092-8674(00)00051-9; PMID: 10966108
  • Cheung KL, Huen J, Houry WA, Ortega J. Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Biochem Cell Biol 2010; 88:77 - 88; http://dx.doi.org/10.1139/O09-159; PMID: 20130681
  • Han YW, Iwasaki H, Miyata T, Mayanagi K, Yamada K, Morikawa K, et al. A unique beta-hairpin protruding from AAA+ ATPase domain of RuvB motor protein is involved in the interaction with RuvA DNA recognition protein for branch migration of Holliday junctions. J Biol Chem 2001; 276:35024 - 8; http://dx.doi.org/10.1074/jbc.M103611200; PMID: 11427534
  • Iwasaki H, Takahagi M, Nakata A, Shinagawa H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev 1992; 6:2214 - 20; http://dx.doi.org/10.1101/gad.6.11.2214; PMID: 1427081
  • Tsaneva IR, Müller B, West SC. ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell 1992; 69:1171 - 80; http://dx.doi.org/10.1016/0092-8674(92)90638-S; PMID: 1617728
  • Matson SW, Bean DW, George JW. DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioessays 1994; 16:13 - 22; http://dx.doi.org/10.1002/bies.950160103; PMID: 8141804
  • Hall MC, Matson SW. Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol 1999; 34:867 - 77; http://dx.doi.org/10.1046/j.1365-2958.1999.01659.x; PMID: 10594814
  • Vindigni A. Biochemical, biophysical, and proteomic approaches to study DNA helicases. Mol Biosyst 2007; 3:266 - 74; PMID: 17372655
  • Tuteja R. Helicases - feasible antimalarial drug target for Plasmodium falciparum. FEBS J 2007; 274:4699 - 704; http://dx.doi.org/10.1111/j.1742-4658.2007.06000.x; PMID: 17824956
  • Tuteja N, Tuteja R. Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 2004; 271:1849 - 63; http://dx.doi.org/10.1111/j.1432-1033.2004.04094.x; PMID: 15128295
  • Tuteja N, Tuteja R. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 2004; 271:1835 - 48; http://dx.doi.org/10.1111/j.1432-1033.2004.04093.x; PMID: 15128294
  • Linder P, Lasko P. Bent out of shape: RNA unwinding by the DEAD-box helicase Vasa. Cell 2006; 125:219 - 21; http://dx.doi.org/10.1016/j.cell.2006.03.030; PMID: 16630807
  • Kanemaki M, Makino Y, Yoshida T, Kishimoto T, Koga A, Yamamoto K, et al. Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem Biophys Res Commun 1997; 235:64 - 8; http://dx.doi.org/10.1006/bbrc.1997.6729; PMID: 9196036
  • Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 1999; 274:22437 - 44; http://dx.doi.org/10.1074/jbc.274.32.22437; PMID: 10428817
  • Makino Y, Mimori T, Koike C, Kanemaki M, Kurokawa Y, Inoue S, et al. TIP49, homologous to the bacterial DNA helicase RuvB, acts as an autoantigen in human. Biochem Biophys Res Commun 1998; 245:819 - 23; http://dx.doi.org/10.1006/bbrc.1998.8504; PMID: 9588198
  • Jónsson ZO, Dhar SK, Narlikar GJ, Auty R, Wagle N, Pellman D, et al. Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 2001; 276:16279 - 88; http://dx.doi.org/10.1074/jbc.M011523200; PMID: 11278922
  • Tsaneva IR, Müller B, West SC. RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro. Proc Natl Acad Sci U S A 1993; 90:1315 - 9; http://dx.doi.org/10.1073/pnas.90.4.1315; PMID: 8433990
  • Estevão S, Sluijter M, Hartwig NG, van Rossum AM, Vink C. Functional characterization of the RuvB homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol 2011; 193:6425 - 35; http://dx.doi.org/10.1128/JB.06003-11; PMID: 21949077
  • Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V, et al. The p400 complex is an essential E1A transformation target. Cell 2001; 106:297 - 307; http://dx.doi.org/10.1016/S0092-8674(01)00450-0; PMID: 11509179
  • Tuteja R, Pradhan A. Unraveling the ‘DEAD-box’ helicases of Plasmodium falciparum. Gene 2006; 376:1 - 12; http://dx.doi.org/10.1016/j.gene.2006.03.007; PMID: 16713133
  • Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22:195 - 201; http://dx.doi.org/10.1093/bioinformatics/bti770; PMID: 16301204
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605 - 12; http://dx.doi.org/10.1002/jcc.20084; PMID: 15264254
  • Rocha EP, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005; 1:e15; http://dx.doi.org/10.1371/journal.pgen.0010015; PMID: 16132081
  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73:39 - 85; http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723; PMID: 15189136
  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 2005; 102:13182 - 7; http://dx.doi.org/10.1073/pnas.0504211102; PMID: 16141325
  • Bauer A, Chauvet S, Huber O, Usseglio F, Rothbächer U, Aragnol D, et al. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 2000; 19:6121 - 30; http://dx.doi.org/10.1093/emboj/19.22.6121; PMID: 11080158
  • Cho SG, Bhoumik A, Broday L, Ivanov V, Rosenstein B, Ronai Z. TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage. Mol Cell Biol 2001; 21:8398 - 413; http://dx.doi.org/10.1128/MCB.21.24.8398-8413.2001; PMID: 11713276
  • Dugan KA, Wood MA, Cole MD. TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene 2002; 21:5835 - 43; http://dx.doi.org/10.1038/sj.onc.1205763; PMID: 12185582
  • Etard C, Gradl D, Kunz M, Eilers M, Wedlich D. Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1. Mech Dev 2005; 122:545 - 56; http://dx.doi.org/10.1016/j.mod.2004.11.010; PMID: 15804567
  • Radovic S, Rapisarda VA, Tosato V, Bruschi CV. Functional and comparative characterization of Saccharomyces cerevisiae RVB1 and RVB2 genes with bacterial Ruv homologues. FEMS Yeast Res 2007; 7:527 - 39; http://dx.doi.org/10.1111/j.1567-1364.2006.00205.x; PMID: 17302941
  • Chauvet S, Usseglio F, Aragnol D, Pradel J. Analysis of paralogous pontin and reptin gene expression during mouse development. Dev Genes Evol 2005; 215:575 - 9; http://dx.doi.org/10.1007/s00427-005-0011-1; PMID: 16003523
  • Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 2006; 21:319 - 30; http://dx.doi.org/10.1016/j.molcel.2005.12.011; PMID: 16455487
  • Rousseau B, Ménard L, Haurie V, Taras D, Blanc JF, Moreau-Gaudry F, et al. Overexpression and role of the ATPase and putative DNA helicase RuvB-like 2 in human hepatocellular carcinoma. Hepatology 2007; 46:1108 - 18; http://dx.doi.org/10.1002/hep.21770; PMID: 17657734
  • Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 2011; 1815:147 - 57; PMID: 21111787
  • Ducat D, Kawaguchi S, Liu H, Yates JR 3rd, Zheng Y. Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Mol Biol Cell 2008; 19:3097 - 110; http://dx.doi.org/10.1091/mbc.E07-11-1202; PMID: 18463163
  • Gartner W, Rossbacher J, Zierhut B, Daneva T, Base W, Weissel M, et al. The ATP-dependent helicase RUVBL1/TIP49a associates with tubulin during mitosis. Cell Motil Cytoskeleton 2003; 56:79 - 93; http://dx.doi.org/10.1002/cm.10136; PMID: 14506706
  • Sigala B, Edwards M, Puri T, Tsaneva IR. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 2005; 310:357 - 69; http://dx.doi.org/10.1016/j.yexcr.2005.07.030; PMID: 16157330
  • Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 2007; 8:983 - 94; http://dx.doi.org/10.1038/nrm2298; PMID: 18037899
  • Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475 - 87; http://dx.doi.org/10.1016/S0092-8674(02)00654-2; PMID: 11909519
  • Shen X, Mizuguchi G, Hamiche A, Wu C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 2000; 406:541 - 4; http://dx.doi.org/10.1038/35020123; PMID: 10952318
  • Jónsson ZO, Jha S, Wohlschlegel JA, Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 2004; 16:465 - 77; http://dx.doi.org/10.1016/j.molcel.2004.09.033; PMID: 15525518
  • Jin J, Cai Y, Yao T, Gottschalk AJ, Florens L, Swanson SK, et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J Biol Chem 2005; 280:41207 - 12; http://dx.doi.org/10.1074/jbc.M509128200; PMID: 16230350
  • Bao Y, Shen X. INO80 subfamily of chromatin remodeling complexes. Mutat Res 2007; 618:18 - 29; http://dx.doi.org/10.1016/j.mrfmmm.2006.10.006; PMID: 17316710
  • Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K. Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem 2003; 278:14647 - 56; http://dx.doi.org/10.1074/jbc.M213220200; PMID: 12576485
  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 2004; 303:343 - 8; http://dx.doi.org/10.1126/science.1090701; PMID: 14645854
  • Sarma K, Reinberg D. Histone variants meet their match. Nat Rev Mol Cell Biol 2005; 6:139 - 49; http://dx.doi.org/10.1038/nrm1567; PMID: 15688000
  • Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol 2003; 10:882 - 91; http://dx.doi.org/10.1038/nsb996; PMID: 14583738
  • Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 2003; 12:1565 - 76; http://dx.doi.org/10.1016/S1097-2765(03)00497-0; PMID: 14690608
  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2004; 2:E131; http://dx.doi.org/10.1371/journal.pbio.0020131; PMID: 15045029
  • Cai Y, Jin J, Florens L, Swanson SK, Kusch T, Li B, et al. The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem 2005; 280:13665 - 70; http://dx.doi.org/10.1074/jbc.M500001200; PMID: 15647280
  • Wu WH, Alami S, Luk E, Wu CH, Sen S, Mizuguchi G, et al. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol 2005; 12:1064 - 71; http://dx.doi.org/10.1038/nsmb1023; PMID: 16299513
  • Jha S, Shibata E, Dutta A. Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol Cell Biol 2008; 28:2690 - 700; http://dx.doi.org/10.1128/MCB.01983-07; PMID: 18285460
  • Doyon Y, Selleck W, Lane WS, Tan S, Côté J. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 2004; 24:1884 - 96; http://dx.doi.org/10.1128/MCB.24.5.1884-1896.2004; PMID: 14966270
  • Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci U S A 1998; 95:3561 - 5; http://dx.doi.org/10.1073/pnas.95.7.3561; PMID: 9520405
  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 2006; 24:841 - 51; http://dx.doi.org/10.1016/j.molcel.2006.11.026; PMID: 17189187
  • Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2006; 24:827 - 39; http://dx.doi.org/10.1016/j.molcel.2006.11.021; PMID: 17189186
  • Bauer A, Huber O, Kemler R. Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci U S A 1998; 95:14787 - 92; http://dx.doi.org/10.1073/pnas.95.25.14787; PMID: 9843967
  • Gospodinov A, Tsaneva I, Anachkova B. RAD51 foci formation in response to DNA damage is modulated by TIP49. Int J Biochem Cell Biol 2009; 41:925 - 33; http://dx.doi.org/10.1016/j.biocel.2008.09.004; PMID: 18834951
  • Doyon Y, Côté J. The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev 2004; 14:147 - 54; http://dx.doi.org/10.1016/j.gde.2004.02.009; PMID: 15196461
  • Volodin AA, Voloshin ON, Camerini-Otero RD. Homologous recombination and RecA protein: towards a new generation of tools for genome manipulations. Trends Biotechnol 2005; 23:97 - 102; http://dx.doi.org/10.1016/j.tibtech.2004.12.005; PMID: 15661347
  • Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 2001; 8:1163 - 74; http://dx.doi.org/10.1016/S1097-2765(01)00419-1; PMID: 11779493
  • McGlynn P, Lloyd RG. Action of RuvAB at replication fork structures. J Biol Chem 2001; 276:41938 - 44; http://dx.doi.org/10.1074/jbc.M107945200; PMID: 11551967
  • Parsons CA, Tsaneva I, Lloyd RG, West SC. Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proc Natl Acad Sci U S A 1992; 89:5452 - 6; http://dx.doi.org/10.1073/pnas.89.12.5452; PMID: 1608954
  • Hishida T, Han YW, Shibata T, Kubota Y, Ishino Y, Iwasaki H, et al. Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks. Genes Dev 2004; 18:1886 - 97; http://dx.doi.org/10.1101/gad.1223804; PMID: 15289460
  • Fujiwara Y, Mayanagi K, Morikawa K. Functional significance of octameric RuvA for a branch migration complex from Thermus thermophilus. Biochem Biophys Res Commun 2008; 366:426 - 31; http://dx.doi.org/10.1016/j.bbrc.2007.11.149; PMID: 18068124
  • Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J 1991; 10:4381 - 9; PMID: 1661673
  • Dunderdale HJ, Benson FE, Parsons CA, Sharples GJ, Lloyd RG, West SC. Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins. Nature 1991; 354:506 - 10; http://dx.doi.org/10.1038/354506a0; PMID: 1758493
  • Shinagawa H, Iwasaki H. Processing the holliday junction in homologous recombination. Trends Biochem Sci 1996; 21:107 - 11; PMID: 8882584
  • West SC. Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 1997; 31:213 - 44; http://dx.doi.org/10.1146/annurev.genet.31.1.213; PMID: 9442895
  • Shiba T, Iwasaki H, Nakata A, Shinagawa H. SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc Natl Acad Sci U S A 1991; 88:8445 - 9; http://dx.doi.org/10.1073/pnas.88.19.8445; PMID: 1833759
  • Hishida T, Han YW, Fujimoto S, Iwasaki H, Shinagawa H. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Proc Natl Acad Sci U S A 2004; 101:9573 - 7; http://dx.doi.org/10.1073/pnas.0403584101; PMID: 15210950
  • Michel B. Replication fork arrest and DNA recombination. Trends Biochem Sci 2000; 25:173 - 8; http://dx.doi.org/10.1016/S0968-0004(00)01560-7; PMID: 10754549
  • Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002; 297:552 - 7; http://dx.doi.org/10.1126/science.1075277; PMID: 12142524
  • Branzei D, Foiani M. Template switching: from replication fork repair to genome rearrangements. Cell 2007; 131:1228 - 30; http://dx.doi.org/10.1016/j.cell.2007.12.007; PMID: 18160033
  • Lambert S, Froget B, Carr AM. Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair (Amst) 2007; 6:1042 - 61; http://dx.doi.org/10.1016/j.dnarep.2007.02.024; PMID: 17412649
  • Tourrière H, Pasero P. Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst) 2007; 6:900 - 13; http://dx.doi.org/10.1016/j.dnarep.2007.02.004; PMID: 17379579
  • Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R. Recombination proteins and rescue of arrested replication forks. DNA Repair (Amst) 2007; 6:967 - 80; http://dx.doi.org/10.1016/j.dnarep.2007.02.016; PMID: 17395553
  • Baharoglu Z, Petranovic M, Flores MJ, Michel B. RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 2006; 25:596 - 604; http://dx.doi.org/10.1038/sj.emboj.7600941; PMID: 16424908
  • Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 2004; 432:187 - 93; http://dx.doi.org/10.1038/nature02988; PMID: 15538360
  • Kiss T. SnoRNP biogenesis meets Pre-mRNA splicing. Mol Cell 2006; 23:775 - 6; http://dx.doi.org/10.1016/j.molcel.2006.08.023; PMID: 16973429
  • King TH, Decatur WA, Bertrand E, Maxwell ES, Fournier MJ. A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol Cell Biol 2001; 21:7731 - 46; http://dx.doi.org/10.1128/MCB.21.22.7731-7746.2001; PMID: 11604509
  • Gonzales FA, Zanchin NI, Luz JS, Oliveira CC. Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J Mol Biol 2005; 346:437 - 55; http://dx.doi.org/10.1016/j.jmb.2004.11.071; PMID: 15670595
  • Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, et al. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 2008; 180:563 - 78; http://dx.doi.org/10.1083/jcb.200709061; PMID: 18268103
  • Newman DR, Kuhn JF, Shanab GM, Maxwell ES. Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA 2000; 6:861 - 79; http://dx.doi.org/10.1017/S1355838200992446; PMID: 10864044
  • McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ. A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 2007; 27:6782 - 93; http://dx.doi.org/10.1128/MCB.01097-07; PMID: 17636026
  • Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jády BE, et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 2008; 180:579 - 95; http://dx.doi.org/10.1083/jcb.200708110; PMID: 18268104
  • McKeegan KS, Debieux CM, Watkins NJ. Evidence that the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. Mol Cell Biol 2009; 29:4971 - 81; http://dx.doi.org/10.1128/MCB.00752-09; PMID: 19620283
  • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007; 315:1850 - 3; http://dx.doi.org/10.1126/science.1138596; PMID: 17395830
  • Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 2002; 109:145 - 8; http://dx.doi.org/10.1016/S0092-8674(02)00718-3; PMID: 12007400
  • Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 2008; 132:945 - 57; http://dx.doi.org/10.1016/j.cell.2008.01.019; PMID: 18358808
  • Matias PM, Gorynia S, Donner P, Carrondo MA. Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 2006; 281:38918 - 29; http://dx.doi.org/10.1074/jbc.M605625200; PMID: 17060327