804
Views
7
CrossRef citations to date
0
Altmetric
Short Communication

Assessing developmental roles of MKK4 and MKK7 in vitro

&
Pages 319-324 | Published online: 01 Jul 2012

References

  • Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268:14553 - 6; PMID: 8325833
  • Dérijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 1995; 267:682 - 5; http://dx.doi.org/10.1126/science.7839144; PMID: 7839144
  • Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81:807 - 69; PMID: 11274345
  • Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19:2435 - 44; PMID: 10082509
  • Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103:239 - 52; http://dx.doi.org/10.1016/S0092-8674(00)00116-1; PMID: 11057897
  • Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, et al. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A 1998; 95:6881 - 6; http://dx.doi.org/10.1073/pnas.95.12.6881; PMID: 9618507
  • Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, De la Pompa JL, et al. Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development 1999; 126:505 - 16; PMID: 9876179
  • Yang D, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ, et al. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci U S A 1997; 94:3004 - 9; http://dx.doi.org/10.1073/pnas.94.7.3004; PMID: 9096336
  • Wada T, Joza N, Cheng HY, Sasaki T, Kozieradzki I, Bachmaier K, et al. MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat Cell Biol 2004; 6:215 - 26; http://dx.doi.org/10.1038/ncb1098; PMID: 15039780
  • Asaoka Y, Nishina H. Diverse physiological functions of MKK4 and MKK7 during early embryogenesis. J Biochem 2010; 148:393 - 401; PMID: 20801953
  • Wang X, Destrument A, Tournier C. Physiological roles of MKK4 and MKK7: insights from animal models. Biochim Biophys Acta 2007; 1773:1349 - 57; http://dx.doi.org/10.1016/j.bbamcr.2006.10.016; PMID: 17157936
  • Yao Z, Diener K, Wang XS, Zukowski M, Matsumoto G, Zhou G, et al. Activation of stress-activated protein kinases/c-Jun N-terminal protein kinases (SAPKs/JNKs) by a novel mitogen-activated protein kinase kinase. J Biol Chem 1997; 272:32378 - 83; http://dx.doi.org/10.1074/jbc.272.51.32378; PMID: 9405446
  • Lee JK, Hwang WS, Lee YD, Han PL. Dynamic expression of SEK1 suggests multiple roles of the gene during embryogenesis and in adult brain of mice. Brain Res Mol Brain Res 1999; 66:133 - 40; http://dx.doi.org/10.1016/S0169-328X(99)00035-2; PMID: 10095085
  • Wang X, Nadarajah B, Robinson AC, McColl BW, Jin JW, Dajas-Bailador F, et al. Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol Cell Biol 2007; 27:7935 - 46; http://dx.doi.org/10.1128/MCB.00226-07; PMID: 17875933
  • Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev 2003; 17:1969 - 78; http://dx.doi.org/10.1101/gad.1107303; PMID: 12893778
  • Doza YN, Cuenda A, Thomas GM, Cohen P, Nebreda AR. Activation of the MAP kinase homologue RK requires the phosphorylation of Thr-180 and Tyr-182 and both residues are phosphorylated in chemically stressed KB cells. FEBS Lett 1995; 364:223 - 8; http://dx.doi.org/10.1016/0014-5793(95)00346-B; PMID: 7750576
  • Lawler S, Fleming Y, Goedert M, Cohen P. Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol 1998; 8:1387 - 90; http://dx.doi.org/10.1016/S0960-9822(98)00019-0; PMID: 9889102
  • Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, et al. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 1995; 268:286 - 90; http://dx.doi.org/10.1126/science.7716521; PMID: 7716521
  • Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 2001; 15:1419 - 26; http://dx.doi.org/10.1101/gad.888501; PMID: 11390361
  • Wada T, Nakagawa K, Watanabe T, Nishitai G, Seo J, Kishimoto H, et al. Impaired synergistic activation of stress-activated protein kinase SAPK/JNK in mouse embryonic stem cells lacking SEK1/MKK4: different contribution of SEK2/MKK7 isoforms to the synergistic activation. J Biol Chem 2001; 276:30892 - 7; http://dx.doi.org/10.1074/jbc.M011780200; PMID: 11418587
  • Nishina H, Wada T, Katada T. Physiological roles of SAPK/JNK signaling pathway. J Biochem 2004; 136:123 - 6; http://dx.doi.org/10.1093/jb/mvh117; PMID: 15496581
  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 1996; 15:2760 - 70; PMID: 8654373
  • Martin JH, Mohit AA, Miller CA. Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 1996; 35:47 - 57; http://dx.doi.org/10.1016/0169-328X(95)00181-Q; PMID: 8717339
  • Yang D, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ, et al. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci U S A 1997; 94:3004 - 9; http://dx.doi.org/10.1073/pnas.94.7.3004; PMID: 9096336
  • Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999; 22:667 - 76; http://dx.doi.org/10.1016/S0896-6273(00)80727-8; PMID: 10230788
  • Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 1999; 89:115 - 24; http://dx.doi.org/10.1016/S0925-4773(99)00213-0; PMID: 10559486
  • Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007; 1773:1358 - 75; http://dx.doi.org/10.1016/j.bbamcr.2007.03.010; PMID: 17481747
  • Hu MC, Wang YP, Mikhail A, Qiu WR, Tan TH. Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 1999; 274:7095 - 102; http://dx.doi.org/10.1074/jbc.274.11.7095; PMID: 10066767
  • Hui L, Bakiri L, Stepniak E, Wagner EF. p38alpha: a suppressor of cell proliferation and tumorigenesis. Cell Cycle 2007; 6:2429 - 33; http://dx.doi.org/10.4161/cc.6.20.4774; PMID: 17957136
  • Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000; 6:109 - 16; PMID: 10949032
  • Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 2000; 191:859 - 70; http://dx.doi.org/10.1084/jem.191.5.859; PMID: 10704466
  • Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S, et al. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 2000; 97:10454 - 9; http://dx.doi.org/10.1073/pnas.180316397; PMID: 10973481
  • Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 2000; 102:221 - 31; http://dx.doi.org/10.1016/S0092-8674(00)00027-1; PMID: 10943842
  • Downs KM, Davies T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 1993; 118:1255 - 66; PMID: 8269852
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145 - 7; http://dx.doi.org/10.1126/science.282.5391.1145; PMID: 9804556
  • Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17:435 - 62; http://dx.doi.org/10.1146/annurev.cellbio.17.1.435; PMID: 11687496
  • Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19:1129 - 55; http://dx.doi.org/10.1101/gad.1303605; PMID: 15905405
  • Desbaillets I, Ziegler U, Groscurth P, Gassmann M. Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physiol 2000; 85:645 - 51; http://dx.doi.org/10.1017/S0958067000021047; PMID: 11187960
  • Höpfl G, Gassmann M, Desbaillets I. Differentiating embryonic stem cells into embryoid bodies. Methods Mol Biol 2004; 254:79 - 98; PMID: 15041757
  • Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 1995; 7:862 - 9; http://dx.doi.org/10.1016/0955-0674(95)80071-9; PMID: 8608017
  • Aberdam E, Barak E, Rouleau M, de LaForest S, Berrih-Aknin S, Suter DM, et al. A pure population of ectodermal cells derived from human embryonic stem cells. Stem Cells 2008; 26:440 - 4; http://dx.doi.org/10.1634/stemcells.2007-0588; PMID: 18032703
  • Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 2004; 7:1003 - 9; http://dx.doi.org/10.1038/nn1301; PMID: 15332090
  • Strübing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 1995; 53:275 - 87; http://dx.doi.org/10.1016/0925-4773(95)00446-8; PMID: 8562428
  • Rathjen J, Haines BP, Hudson KM, Nesci A, Dunn S, Rathjen PD. Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development 2002; 129:2649 - 61; PMID: 12015293
  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18:675 - 9; http://dx.doi.org/10.1038/76536; PMID: 10835609
  • O’Shea KS. Neural differentiation of embryonic stem cells. Methods Mol Biol 2002; 198:3 - 14; PMID: 11951633
  • Metallo CM, Ji L, de Pablo JJ, Palecek SP. Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells 2008; 26:372 - 80; http://dx.doi.org/10.1634/stemcells.2007-0501; PMID: 17962700
  • Nguyen Ngoc TD, Son YO, Lim SS, Shi X, Kim JG, Heo JS, et al. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways. Toxicol Appl Pharmacol 2012; 259:329 - 37; http://dx.doi.org/10.1016/j.taap.2012.01.010; PMID: 22285274
  • Chae HD, Broxmeyer HE. SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species-induced apoptosis in mouse embryonic stem cells. Stem Cells Dev 2011; 20:1277 - 85; http://dx.doi.org/10.1089/scd.2010.0465; PMID: 21083429
  • Kim MH, Kim MO, Heo JS, Kim JS, Han HJ. Acetylcholine inhibits long-term hypoxia-induced apoptosis by suppressing the oxidative stress-mediated MAPKs activation as well as regulation of Bcl-2, c-IAPs, and caspase-3 in mouse embryonic stem cells. Apoptosis 2008; 13:295 - 304; http://dx.doi.org/10.1007/s10495-007-0160-y; PMID: 18049903
  • Huang FJ, Lan KC, Kang HY, Lin PY, Chan WH, Hsu YC, et al. Retinoic acid influences the embryoid body formation in mouse embryonic stem cells by induction of caspase and p38 MAPK/JNK-mediated apoptosis. Environ Toxicol 2011; Epub ahead of print http://dx.doi.org/10.1002/tox.20709; PMID: 21626648
  • Lee SH, Heo JS, Lee MY, Han HJ. Effect of dihydrotestosterone on hydrogen peroxide-induced apoptosis of mouse embryonic stem cells. J Cell Physiol 2008; 216:269 - 75; http://dx.doi.org/10.1002/jcp.21402; PMID: 18330893
  • Krishnamoorthy M, Heimburg-Molinaro J, Bargo AM, Nash RJ, Nash RJ. Heparin binding epidermal growth factor-like growth factor and PD169316 prevent apoptosis in mouse embryonic stem cells. J Biochem 2009; 145:177 - 84; http://dx.doi.org/10.1093/jb/mvn153; PMID: 19010935
  • Hsuuw YD, Kuo TF, Lee KH, Liu YC, Huang YT, Lai CY, et al. Ginkgolide B induces apoptosis via activation of JNK and p21-activated protein kinase 2 in mouse embryonic stem cells. Ann N Y Acad Sci 2009; 1171:501 - 8; http://dx.doi.org/10.1111/j.1749-6632.2009.04691.x; PMID: 19723096
  • Xu P, Davis RJ. c-Jun NH2-terminal kinase is required for lineage-specific differentiation but not stem cell self-renewal. Mol Cell Biol 2010; 30:1329 - 40; http://dx.doi.org/10.1128/MCB.00795-09; PMID: 20065035
  • Aubert J, Dunstan H, Chambers I, Smith A. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 2002; 20:1240 - 5; http://dx.doi.org/10.1038/nbt763; PMID: 12447396
  • Haegele L, Ingold B, Naumann H, Tabatabai G, Ledermann B, Brandner S. Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol Cell Neurosci 2003; 24:696 - 708; http://dx.doi.org/10.1016/S1044-7431(03)00232-X; PMID: 14664819
  • Amura CR, Marek L, Winn RA, Heasley LE. Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Mol Cell Biol 2005; 25:10791 - 802; http://dx.doi.org/10.1128/MCB.25.24.10791-10802.2005; PMID: 16314504
  • Onizuka T, Yuasa S, Kusumoto D, Shimoji K, Egashira T, Ohno Y, et al. Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway. J Mol Cell Cardiol 2012; 52:650 - 9; http://dx.doi.org/10.1016/j.yjmcc.2011.11.010; PMID: 22146296
  • Aouadi M, Bost F, Caron L, Laurent K, Le Marchand Brustel Y, Binétruy B. p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis. Stem Cells 2006; 24:1399 - 406; http://dx.doi.org/10.1634/stemcells.2005-0398; PMID: 16424397
  • Aouadi M, Laurent K, Prot M, Le Marchand-Brustel Y, Binétruy B, Bost F. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes 2006; 55:281 - 9; http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0963; PMID: 16443758
  • Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 2008; 76:357 - 70; http://dx.doi.org/10.1111/j.1432-0436.2007.00236.x; PMID: 18021257
  • Barruet E, Hadadeh O, Peiretti F, Renault VM, Hadjal Y, Bernot D, et al. p38 mitogen activated protein kinase controls two successive-steps during the early mesodermal commitment of embryonic stem cells. Stem Cells Dev 2011; 20:1233 - 46; http://dx.doi.org/10.1089/scd.2010.0213; PMID: 20954847
  • Wu J, Kubota J, Hirayama J, Nagai Y, Nishina S, Yokoi T, et al. p38 Mitogen-activated protein kinase controls a switch between cardiomyocyte and neuronal commitment of murine embryonic stem cells by activating myocyte enhancer factor 2C-dependent bone morphogenetic protein 2 transcription. Stem Cells Dev 2010; 19:1723 - 34; http://dx.doi.org/10.1089/scd.2010.0066; PMID: 20412016
  • Ding L, Liang XG, Hu Y, Zhu DY, Lou YJ. Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev 2008; 17:751 - 60; http://dx.doi.org/10.1089/scd.2007.0206; PMID: 18484897
  • Chakraborty S, Kang B, Huang F, Guo YL. Mouse embryonic stem cells lacking p38alpha and p38delta can differentiate to endothelial cells, smooth muscle cells, and epithelial cells. Differentiation 2009; 78:143 - 50; http://dx.doi.org/10.1016/j.diff.2009.05.006; PMID: 19539422
  • Huang Z, Yu J, Toselli P, Bhawan J, Sudireddy V, Taylor L, et al. Angiotensin II type 1 and bradykinin B2 receptors expressed in early stage epithelial cells derived from human embryonic stem cells. J Cell Physiol 2007; 211:816 - 25; http://dx.doi.org/10.1002/jcp.20985; PMID: 17299793
  • Li Z, Theus MH, Wei L. Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 2006; 48:513 - 23; http://dx.doi.org/10.1111/j.1440-169X.2006.00889.x; PMID: 17026715
  • Chayama K, Papst PJ, Garrington TP, Pratt JC, Ishizuka T, Webb S, et al. Role of MEKK2-MEK5 in the regulation of TNF-alpha gene expression and MEKK2-MKK7 in the activation of c-Jun N-terminal kinase in mast cells. Proc Natl Acad Sci U S A 2001; 98:4599 - 604; http://dx.doi.org/10.1073/pnas.081021898; PMID: 11274363
  • Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 2001; 497:15 - 9; http://dx.doi.org/10.1016/S0014-5793(01)02423-1; PMID: 11376655
  • Wang J, Chen L, Ko CI, Zhang L, Puga A, Xia Y. Distinct signaling properties of mitogen-activated protein kinase kinases 4 (MKK4) and 7 (MKK7) in embryonic stem cell (ESC) differentiation. J Biol Chem 2012; 287:2787 - 97; http://dx.doi.org/10.1074/jbc.M111.281915; PMID: 22130668
  • Kempf H, Lecina M, Ting S, Zweigerdt R, Oh S. Distinct regulation of mitogen-activated protein kinase activities is coupled with enhanced cardiac differentiation of human embryonic stem cells. Stem Cell Res 2011; 7:198 - 209; http://dx.doi.org/10.1016/j.scr.2011.06.001; PMID: 21907163
  • Wan CR, Chung S, Kamm RD. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 2011; 39:1840 - 7; http://dx.doi.org/10.1007/s10439-011-0275-8; PMID: 21336802
  • Tiwari VK, Stadler MB, Wirbelauer C, Paro R, Schübeler D, Beisel C. A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet 2012; 44:94 - 100; http://dx.doi.org/10.1038/ng.1036; PMID: 22179133