1,603
Views
36
CrossRef citations to date
0
Altmetric
Perspective

Conserved role of dopamine in the modulation of behavior

&
Pages 440-447 | Published online: 01 Sep 2012

References

  • Elsworth JD, Roth RH. Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp Neurol 1997; 144:4 - 9; http://dx.doi.org/10.1006/exnr.1996.6379; PMID: 9126143
  • Rios M, Habecker B, Sasaoka T, Eisenhofer G, Tian H, Landis S, et al. Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J Neurosci 1999; 19:3519 - 26; PMID: 10212311
  • Forward RB Jr.. Effects of neurochemicals upon a dinoflagellate photoresponse. J Protozool 1977; 24:401 - 5; PMID: 21286
  • Kiefer DA, Lasker R. Two blooms of Gymnodinium splendens, an unarmored dinoflagelate. Fish Bull US 1975; 73:675 - 8
  • Udenfriend S, Lovenberg W, Sjoerdsma A. Physiologically active amines in common fruits and vegetables. Arch Biochem Biophys 1959; 85:487 - 90; http://dx.doi.org/10.1016/0003-9861(59)90516-8; PMID: 13840159
  • Waalkes TP, Sjoerdsma A, Creveling CR, Weissbach H, Udenfriend S. Serotonin, norepinephrine, and related compounds in bananas. Science 1958; 127:648 - 50; http://dx.doi.org/10.1126/science.127.3299.648; PMID: 17808884
  • Kanazawa K, Sakakibara H. High content of dopamine, a strong antioxidant, in Cavendish banana. J Agric Food Chem 2000; 48:844 - 8; http://dx.doi.org/10.1021/jf9909860; PMID: 10725161
  • Murooka Y, Doi N, Harada T. Distribution of membrane-bound monoamine oxidase in bacteria. Appl Environ Microbiol 1979; 38:565 - 9; PMID: 120132
  • Calne DB. Role of ergot derivatives in the treatment of parkinsonism. Fed Proc 1978; 37:2207 - 9; PMID: 658459
  • Ness JC, Morse DE. Regulation of galactokinase gene expression in Tetrahymena thermophila. II. Identification of 3,4-dihydroxyphenylalanine as a primary effector of adrenergic control of galactokinase expression. J Biol Chem 1985; 260:10013 - 8; PMID: 2991271
  • Carlberg M, Anctil M. Biogenic amines in coelenterates. Comp Biochem Physiol C 1993; 106:1 - 9; http://dx.doi.org/10.1016/0742-8413(93)90250-O; PMID: 7903605
  • Ostroumova TV, Markova LN. The effects of dopamine synthesis inhibitors and dopamine antagonists on regeneration in the hydra Hydra attenuata.. Neurosci Behav Physiol 2002; 32:293 - 8; http://dx.doi.org/10.1023/A:1015066424928; PMID: 12135343
  • Sulston J, Dew M, Brenner S. Dopaminergic neurons in the nematode Caenorhabditis elegans.. J Comp Neurol 1975; 163:215 - 26; http://dx.doi.org/10.1002/cne.901630207; PMID: 240872
  • Martinez EA, Murray M, Leung MK, Stefano GB. Evidence for dopaminergic and opiod involvement in the regulation of locomotor activity in the land crab Gecarcinus lateralis.. Comp Biochem Phys Part C 1988; 90:89 - 93; http://dx.doi.org/10.1016/0742-8413(88)90103-X
  • McClellan AD, Brown GD, Getting PA. Modulation of swimming in Tritonia: excitatory and inhibitory effects of serotonin. J Comp Physiol A 1994; 174:257 - 66; http://dx.doi.org/10.1007/BF00193792; PMID: 7908336
  • Crisp KM, Mesce KA. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech. J Exp Biol 2004; 207:4535 - 42; http://dx.doi.org/10.1242/jeb.01315; PMID: 15579549
  • McPherson DR, Kemnitz CP. Modulation of lamprey fictive swimming and motoneuron physiology by dopamine, and its immunocytochemical localization in the spinal cord. Neurosci Lett 1994; 166:23 - 6; http://dx.doi.org/10.1016/0304-3940(94)90831-1; PMID: 8190353
  • Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci 1992; 50:203 - 12; http://dx.doi.org/10.1016/0024-3205(92)90273-R; PMID: 1731173
  • Gómez BL, Nosanchuk JD. Melanin and fungi. Curr Opin Infect Dis 2003; 16:91 - 6; http://dx.doi.org/10.1097/00001432-200304000-00005; PMID: 12734441
  • Williamson PR, Wakamatsu K, Ito S. Melanin biosynthesis in Cryptococcus neoformans.. J Bacteriol 1998; 180:1570 - 2; PMID: 9515929
  • Weisel-Eichler A, Haspel G, Libersat F. Venom of a parasitoid wasp induces prolonged grooming in the cockroach. J Exp Biol 1999; 202:957 - 64; PMID: 10085268
  • Weisel-Eichler A, Libersat F. Venom effects on monoaminergic systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:683 - 90; http://dx.doi.org/10.1007/s00359-004-0526-3; PMID: 15160282
  • Jorgensen EM. Dopamine: should I stay or should I go now?. Nat Neurosci 2004; 7:1019 - 21; http://dx.doi.org/10.1038/nn1004-1019; PMID: 15452567
  • Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role?. Trends Genet 2004; 20:292 - 9; http://dx.doi.org/10.1016/j.tig.2004.05.007; PMID: 15219393
  • Suo S, Sasagawa N, Ishiura S. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem 2003; 86:869 - 78; http://dx.doi.org/10.1046/j.1471-4159.2003.01896.x; PMID: 12887685
  • Le Crom S, Kapsimali M, Barôme P-O, Vernier P. Dopamine receptors for every species: gene duplications and functional diversification in Craniates. J Struct Funct Genomics 2003; 3:161 - 76; http://dx.doi.org/10.1023/A:1022686622752; PMID: 12836695
  • Nass R, Blakely RD. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol 2003; 43:521 - 44; http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.135934; PMID: 12415122
  • Ringstad N, Abe N, Horvitz HR. Ligand-gated chloride channels are receptors for biogenic amines in C. elegans.. Science 2009; 325:96 - 100; http://dx.doi.org/10.1126/science.1169243; PMID: 19574391
  • Pavlova GA. Effects of serotonin, dopamine and ergometrine on locomotion in the pulmonate mollusc Helix lucorum.. J Exp Biol 2001; 204:1625 - 33; PMID: 11398751
  • Souza BR, Romano-Silva MA, Tropepe V. Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae. J Neurosci 2011; 31:5512 - 25; http://dx.doi.org/10.1523/JNEUROSCI.5548-10.2011; PMID: 21471388
  • Flames N, Hobert O. Gene regulatory logic of dopamine neuron differentiation. Nature 2009; 458:885 - 9; http://dx.doi.org/10.1038/nature07929; PMID: 19287374
  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans.. Philos Trans R Soc Lond B Biol Sci 1986; 314:1 - 340; http://dx.doi.org/10.1098/rstb.1986.0056; PMID: 22462104
  • Chase DL, Pepper JS, Koelle MR. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans.. Nat Neurosci 2004; 7:1096 - 103; http://dx.doi.org/10.1038/nn1316; PMID: 15378064
  • Li W, Feng Z, Sternberg PW, Xu XZ. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 2006; 440:684 - 7; http://dx.doi.org/10.1038/nature04538; PMID: 16572173
  • Li W, Kang L, Piggott BJ, Feng Z, Xu XZ. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans.. Nat Commun 2011; 2:315; http://dx.doi.org/10.1038/ncomms1308; PMID: 21587232
  • Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. From modes to movement in the behavior of Caenorhabditis elegans.. PLoS One 2010; 5:e13914; http://dx.doi.org/10.1371/journal.pone.0013914; PMID: 21103370
  • Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000; 26:619 - 31; http://dx.doi.org/10.1016/S0896-6273(00)81199-X; PMID: 10896158
  • Sugiura M, Fuke S, Suo S, Sasagawa N, Van Tol HHM, Ishiura S. Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans.. J Neurochem 2005; 94:1146 - 57; http://dx.doi.org/10.1111/j.1471-4159.2005.03268.x; PMID: 16001968
  • Suo S, Sasagawa N, Ishiura S. Identification of a dopamine receptor from Caenorhabditis elegans.. Neurosci Lett 2002; 319:13 - 6; http://dx.doi.org/10.1016/S0304-3940(01)02477-6; PMID: 11814642
  • Tsalik EL, Niacaris T, Wenick AS, Pau K, Avery L, Hobert O. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 2003; 263:81 - 102; http://dx.doi.org/10.1016/S0012-1606(03)00447-0; PMID: 14568548
  • Self DW, Barnhart WJ, Lehman DA, Nestler EJ. Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 1996; 271:1586 - 9; http://dx.doi.org/10.1126/science.271.5255.1586; PMID: 8599115
  • Kindt KS, Quast KB, Giles AC, De S, Hendrey D, Nicastro I, et al. Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans.. Neuron 2007; 55:662 - 76; http://dx.doi.org/10.1016/j.neuron.2007.07.023; PMID: 17698017
  • Ezcurra M, Tanizawa Y, Swoboda P, Schafer WR. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J 2011; 30:1110 - 22; http://dx.doi.org/10.1038/emboj.2011.22; PMID: 21304491
  • Hukema RK, Rademakers S, Jansen G. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learn Mem 2008; 15:829 - 36; http://dx.doi.org/10.1101/lm.994408; PMID: 18984564
  • Ezak MJ, Ferkey DM. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One 2010; 5:e9487; http://dx.doi.org/10.1371/journal.pone.0009487; PMID: 20209143
  • Kimura KD, Fujita K, Katsura I. Enhancement of odor avoidance regulated by dopamine signaling in Caenorhabditis elegans.. J Neurosci 2010; 30:16365 - 75; http://dx.doi.org/10.1523/JNEUROSCI.6023-09.2010; PMID: 21123582
  • Voglis G, Tavernarakis N. A synaptic DEG/ENaC ion channel mediates learning in C. elegans by facilitating dopamine signalling. EMBO J 2008; 27:3288 - 99; http://dx.doi.org/10.1038/emboj.2008.252; PMID: 19037257
  • Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, et al. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans.. EMBO J 2004; 23:473 - 82; http://dx.doi.org/10.1038/sj.emboj.7600057; PMID: 14739932
  • Ward A, Walker VJ, Feng Z, Xu XZ. Cocaine modulates locomotion behavior in C. elegans.. PLoS One 2009; 4:e5946; http://dx.doi.org/10.1371/journal.pone.0005946; PMID: 19536276
  • Lee J, Jee C, McIntire SL. Ethanol preference in C. elegans.. Genes Brain Behav 2009; 8:578 - 85; http://dx.doi.org/10.1111/j.1601-183X.2009.00513.x; PMID: 19614755
  • Bettinger JC, McIntire SL. State-dependency in C. elegans.. Genes Brain Behav 2004; 3:266 - 72; http://dx.doi.org/10.1111/j.1601-183X.2004.00080.x; PMID: 15344920
  • Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD. Serotonin and octopamine in the nematode Caenorhabditis elegans.. Science 1982; 216:1012 - 4; http://dx.doi.org/10.1126/science.6805073; PMID: 6805073
  • Weinshenker D, Garriga G, Thomas JH. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans.. J Neurosci 1995; 15:6975 - 85; PMID: 7472454
  • Murakami H, Bessinger K, Hellmann J, Murakami S. Manipulation of serotonin signal suppresses early phase of behavioral aging in Caenorhabditis elegans.. Neurobiol Aging 2008; 29:1093 - 100; http://dx.doi.org/10.1016/j.neurobiolaging.2007.01.013; PMID: 17336425
  • Pierce-Shimomura JT, Chen BL, Mun JJ, Ho R, Sarkis R, McIntire SL. Genetic analysis of crawling and swimming locomotory patterns in C. elegans.. Proc Natl Acad Sci U S A 2008; 105:20982 - 7; http://dx.doi.org/10.1073/pnas.0810359105; PMID: 19074276
  • Shen XN, Sznitman J, Krajacic P, Lamitina T, Arratia PE. Undulatory locomotion of C. elegans on wet surfaces. arXiv:1112.1118v1 [physics.flu-dyn].
  • Vidal-Gadea AG, Topper S, Young L, Crisp A, Kressin L, Elbel E, et al. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 2011; 108:17504 - 9; http://dx.doi.org/10.1073/pnas.1108673108; PMID: 21969584
  • Willard AL. Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. J Neurosci 1981; 1:936 - 44; PMID: 7288474
  • Korta J, Clark DA, Gabel CV, Mahadevan L, Samuel ADT. Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans.. J Exp Biol 2007; 210:2383 - 9; http://dx.doi.org/10.1242/jeb.004572; PMID: 17575043
  • Berri S, Boyle JH, Tassieri M, Hope IA, Cohen N. Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP J 2009; 3:186 - 93; http://dx.doi.org/10.2976/1.3082260; PMID: 19639043
  • Fang-Yen C, Wyart M, Xie J, Kawai R, Kodger T, Chen S, et al. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.. Proc Natl Acad Sci U S A 2010; 107:20323 - 8; http://dx.doi.org/10.1073/pnas.1003016107; PMID: 21048086
  • Vidal-Gadea AG, Davis S, Becker L, Pierce-Shimomura JT. Coordination of behavioral hierarchies during environmental transitions in Caenorhabditis elegans.. Worm 2012; 1:1 - 7; http://dx.doi.org/10.4161/worm.19148
  • Hills T, Brockie PJ, Maricq AV. Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans.. J Neurosci 2004; 24:1217 - 25; http://dx.doi.org/10.1523/JNEUROSCI.1569-03.2004; PMID: 14762140
  • Gaglia MM, Kenyon CJ. Stimulation of movement in a quiescent, hibernation-like form of Caenorhabditis elegans by dopamine signaling. J Neurosci 2009; 29:7302 - 14; http://dx.doi.org/10.1523/JNEUROSCI.3429-08.2009; PMID: 19494152
  • Carvelli L, Matthies DS, Galli A. Molecular mechanisms of amphetamine actions in Caenorhabditis elegans.. Mol Pharmacol 2010; 78:151 - 6; http://dx.doi.org/10.1124/mol.109.062703; PMID: 20410438
  • McDonald PW, Hardie SL, Jessen TN, Carvelli L, Matthies DS, Blakely RD. Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci 2007; 27:14216 - 27; http://dx.doi.org/10.1523/JNEUROSCI.2992-07.2007; PMID: 18094261
  • Charcot JM. Leçons Du Mardi À La Salpêtrière. In: Lecrosnier E, Babé, eds., Progrès Médical. I. Paris: Aux Bureaux de Progrès Médical, 1889:1-579.
  • Parkinson J. An essay on the shaking palsy. London: Whittingham and Rowland, 1817:1-66.
  • Bouchard M, Mergler D, Baldwin ME, Panisset M. Manganese cumulative exposure and symptoms: a follow-up study of alloy workers. Neurotoxicology 2008; 29:577 - 83; http://dx.doi.org/10.1016/j.neuro.2008.04.013; PMID: 18562007
  • Breese GR, Traylor TD. Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 1971; 42:88 - 99; PMID: 5580702
  • Langston JW, Palfreman J. The case of the frozen addicts. New York: Pantheon Books, 1995:1-309.
  • Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelson C, Pepivani I, et al. Lewy body Parkinson’s disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol 2005; 58:411 - 22; http://dx.doi.org/10.1002/ana.20587; PMID: 16130111
  • Whaley NR, Uitti RJ, Dickson DW, Farrer MJ, Wszolek ZK. Clinical and pathologic features of families with LRRK2-associated Parkinson’s disease. J Neural Transm Suppl 2006; 70:221 - 9; http://dx.doi.org/10.1007/978-3-211-45295-0_34; PMID: 17017533
  • Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001; 50:293 - 300; http://dx.doi.org/10.1002/ana.1132; PMID: 11558785
  • Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci 2002; 22:3090 - 9; PMID: 11943812
  • Senoh S, Witkop B, Creveling CR, Udenfriend S. 2, 4, 5-trihydroxyphenethylamine, a new metabolite of 3, 4-dihydroxyphenethylamine. J Am Chem Soc 1959; 81:1768 - 9; http://dx.doi.org/10.1021/ja01516a065
  • Senoh S, Creveling CR, Udenfriend S, Witkop B. Chemical, Enzymatic and Metabolic Studies on the Mechanism of Oxidation of Dopamine. J Am Chem Soc 1959; 81:6236 - 40; http://dx.doi.org/10.1021/ja01532a030
  • Gerfen CR. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist 2003; 9:455 - 62; http://dx.doi.org/10.1177/1073858403255839; PMID: 14678578
  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr., et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250:1429 - 32; http://dx.doi.org/10.1126/science.2147780; PMID: 2147780
  • Paul ML, Graybiel AM, David JC, Robertson HA. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 1992; 12:3729 - 42; PMID: 1357113
  • Gerfen CR, Miyachi S, Paletzki R, Brown P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 2002; 22:5042 - 54; PMID: 12077200
  • Nadjar A, Gerfen CR, Bezard E. Priming for l-dopa-induced dyskinesia in Parkinson’s disease: a feature inherent to the treatment or the disease?. Prog Neurobiol 2009; 87:1 - 9; http://dx.doi.org/10.1016/j.pneurobio.2008.09.013; PMID: 18938208
  • Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995; 65:1157 - 65; http://dx.doi.org/10.1046/j.1471-4159.1995.65031157.x; PMID: 7643093
  • Guigoni C, Aubert I, Li Q, Gurevich VV, Benovic JL, Ferry S, et al. Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism Relat Disord 2005; 11:Suppl 1 S25 - 9; http://dx.doi.org/10.1016/j.parkreldis.2004.11.005; PMID: 15885624
  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord 2007; 22:1379 - 89, quiz 1523; http://dx.doi.org/10.1002/mds.21475; PMID: 17427940
  • Brooks DJ. Dopamine agonists: their role in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2000; 68:685 - 9; http://dx.doi.org/10.1136/jnnp.68.6.685; PMID: 10811688
  • Kalda A, Herm L, Rinken A, Zharkovsky A, Chen J-F. Co-administration of the partial dopamine D2 agonist terguride with L-dopa attenuates L-dopa-induced locomotor sensitization in hemiparkinsonian mice. Behav Brain Res 2009; 202:232 - 7; http://dx.doi.org/10.1016/j.bbr.2009.03.037; PMID: 19463706
  • Nass R, Miller DM, Blakely RD. C. elegans: a novel pharmacogenetic model to study Parkinson’s disease. Parkinsonism Relat Disord 2001; 7:185 - 91; http://dx.doi.org/10.1016/S1353-8020(00)00056-0; PMID: 11331185
  • Wintle RF, Van Tol HHM. Dopamine signaling in Caenorhabditis elegans-potential for parkinsonism research. Parkinsonism Relat Disord 2001; 7:177 - 83; http://dx.doi.org/10.1016/S1353-8020(00)00055-9; PMID: 11331184
  • Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, et al. Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans.. J Biol Chem 2006; 281:334 - 40; http://dx.doi.org/10.1074/jbc.M504860200; PMID: 16260788
  • Lakso M, Vartiainen S, Moilanen AM, Sirviö J, Thomas JH, Nass R, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 2003; 86:165 - 72; http://dx.doi.org/10.1046/j.1471-4159.2003.01809.x; PMID: 12807436
  • Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 2008; 105:728 - 33; http://dx.doi.org/10.1073/pnas.0711018105; PMID: 18182484
  • Dexter PM, Caldwell KA, Caldwell GA. A predictable worm: application of Caenorhabditis elegans for mechanistic investigation of movement disorders. Neurotherapeutics 2012; 9:393 - 404; http://dx.doi.org/10.1007/s13311-012-0109-x; PMID: 22403010
  • Nass R, Hall DH, Miller DM 3rd, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans.. Proc Natl Acad Sci U S A 2002; 99:3264 - 9; http://dx.doi.org/10.1073/pnas.042497999; PMID: 11867711
  • Cao S, Gelwix CC, Caldwell KA, Caldwell GA. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans.. J Neurosci 2005; 25:3801 - 12; http://dx.doi.org/10.1523/JNEUROSCI.5157-04.2005; PMID: 15829632
  • Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and DJ-1 in Caenorhabditis elegans.. J Biol Chem 2005; 280:42655 - 68; http://dx.doi.org/10.1074/jbc.M505910200; PMID: 16239214
  • Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC. Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener Dis 2004; 1:175 - 83; http://dx.doi.org/10.1159/000080983; PMID: 16908987
  • Jadiya P, Chatterjee M, Sammi SR, Kaur S, Palit G, Nazir A. Sir-2.1 modulates ‘calorie-restriction-mediated’ prevention of neurodegeneration in Caenorhabditis elegans: implications for Parkinson’s disease. Biochem Biophys Res Commun 2011; 413:306 - 10; http://dx.doi.org/10.1016/j.bbrc.2011.08.092; PMID: 21889494
  • Rohde CB, Gilleland C, Samara C, Norton S, Haggarty S, et al. Microfluidic in vivo screen identifies compounds enhancing neuronal regeneration. Ann Int Conf IEEE EMBS 2009; 5950–2.
  • Kwok TC, Ricker N, Fraser R, Chan AW, Burns A, Stanley EF, et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 2006; 441:91 - 5; http://dx.doi.org/10.1038/nature04657; PMID: 16672971
  • Lemieux GA, Liu J, Mayer N, Bainton RJ, Ashrafi K, Werb Z. A whole-organism screen identifies new regulators of fat storage. Nat Chem Biol 2011; 7:206 - 13; http://dx.doi.org/10.1038/nchembio.534; PMID: 21390037
  • Doitsidou M, Flames N, Lee AC, Boyanov A, Hobert O. Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans.. Nat Methods 2008; 5:869 - 72; http://dx.doi.org/10.1038/nmeth.1250; PMID: 18758453
  • Flames N, Hobert O. Gene regulatory logic of dopamine neuron differentiation. Nature 2009; 458:885 - 9; http://dx.doi.org/10.1038/nature07929; PMID: 19287374
  • Ruan Q, Harrington AJ, Caldwell KA, Caldwell GA, Standaert DG. VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson’s disease. Neurobiol Dis 2010; 37:330 - 8; http://dx.doi.org/10.1016/j.nbd.2009.10.011; PMID: 19850127