886
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Red-green color vision in three catarrhine primates

, , &
Pages 583-589 | Published online: 01 Nov 2012

References

  • Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A 1992; 89:5932 - 6; http://dx.doi.org/10.1073/pnas.89.13.5932; PMID: 1385866
  • Bowmaker JK. Evolution of colour vision in vertebrates. Eye (Lond) 1998; 12:Pt 3b 541 - 7; http://dx.doi.org/10.1038/eye.1998.143; PMID: 9775215
  • Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 2000; 19:385 - 419; http://dx.doi.org/10.1016/S1350-9462(00)00002-1; PMID: 10785616
  • Jacobs GH. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc 1993; 68:413 - 71; http://dx.doi.org/10.1111/j.1469-185X.1993.tb00738.x; PMID: 8347768
  • Allen G. The Colour Sense: Its Origin and Development. London:Trübner, 1879:282.
  • Osorio D, Vorobyev M. A review of the evolution of animal colour vision and visual communication signals. Vision Res 2008; 48:2042 - 51; http://dx.doi.org/10.1016/j.visres.2008.06.018; PMID: 18627773
  • Ahnelt PK, Kolb H. The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res 2000; 19:711 - 77; http://dx.doi.org/10.1016/S1350-9462(00)00012-4; PMID: 11029553
  • Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J. Trichromacy in Australian marsupials. Curr Biol 2002; 12:657 - 60; http://dx.doi.org/10.1016/S0960-9822(02)00772-8; PMID: 11967153
  • Gilad Y, Przeworski M, Lancet D. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2004; 2:E5; http://dx.doi.org/10.1371/journal.pbio.0020005; PMID: 14737185
  • Jacobs GH, Deegan JF 2nd. Uniformity of colour vision in Old World monkeys. Proc Biol Sci 1999; 266:2023 - 8; http://dx.doi.org/10.1098/rspb.1999.0881; PMID: 10584339
  • Kainz PM, Neitz J, Neitz M. Recent evolution of uniform trichromacy in a New World monkey. Vision Res 1998; 38:3315 - 20; http://dx.doi.org/10.1016/S0042-6989(98)00078-9; PMID: 9893843
  • Regan BC, Julliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res 1998; 38:3321 - 7; http://dx.doi.org/10.1016/S0042-6989(97)00462-8; PMID: 9893844
  • Lucas PW, Darvell BW, Lee PKD, Yuen TDB, Choong MF. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol (Basel) 1998; 69:139 - 52; http://dx.doi.org/10.1159/000021576; PMID: 9595683
  • Sumner P, Mollon JD. Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 2000; a 203:1963 - 86; PMID: 10851115
  • Sumner P, Mollon JD. Chromaticity as a signal of ripeness in fruits taken by primates. J Exp Biol 2000; 203:1987 - 2000; PMID: 10851116
  • Jacobs GH. Primate photopigments and primate color vision. Proc Natl Acad Sci U S A 1996; 93:577 - 81; http://dx.doi.org/10.1073/pnas.93.2.577; PMID: 8570598
  • Vorobyev M. Ecology and evolution of primate colour vision. Clin Exp Optom 2004; 87:230 - 8; http://dx.doi.org/10.1111/j.1444-0938.2004.tb05053.x; PMID: 15312027
  • Julliot C. Frugivory and seed dispersal by red howler monkeys: evolutionary aspect. Rev Ecol-Terre Vie 1994; 49:331 - 41
  • Smith AC, Buchanan-Smith HM, Surridge AK, Osorio D, Mundy NI. The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol 2003; 206:3159 - 65; http://dx.doi.org/10.1242/jeb.00536; PMID: 12909697
  • Dominy NJ, Lucas PW. Ecological importance of trichromatic vision to primates. Nature 2001; 410:363 - 6; http://dx.doi.org/10.1038/35066567; PMID: 11268211
  • Osorio D, Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci 1996; 263:593 - 9; http://dx.doi.org/10.1098/rspb.1996.0089; PMID: 8677259
  • Terborgh J, van Schaik CP. Convergence vs. nonconvergence in primate communities. In: Gee GHR, Giller PS, eds. Organization of Communities Past and Present. Oxford:Blackwell Scientific, 1987:205-26.
  • Dominy NJ, Lucas PW. Significance of color, calories, and climate to the visual ecology of catarrhines. Am J Primatol 2004; 62:189 - 207; http://dx.doi.org/10.1002/ajp.20015; PMID: 15027092
  • Setchell JM, Dixson AF. Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Horm Behav 2001; 39:177 - 84; http://dx.doi.org/10.1006/hbeh.2000.1628; PMID: 11300708
  • Setchell JM, Wickings EJ. Dominance, status signals and coloration in male mandrills (Mandrillus sphinx). Ethology 2005; 111:25 - 50; http://dx.doi.org/10.1111/j.1439-0310.2004.01054.x
  • Setchell JM, Wickings EJ, Knapp LA. Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proc Biol Sci 2006; 273:2395 - 400; http://dx.doi.org/10.1098/rspb.2006.3573; PMID: 16928644
  • Setchell JM, Charpentier M, Bedjabaga IB, Reed P, Wickings EJ, Knapp LA. Secondary sexual characters and female quality in primates. Behav Ecol Sociobiol 2006; 61:305 - 15; http://dx.doi.org/10.1007/s00265-006-0260-7
  • Setchell JM, Smith TE, Wickings EJ, Knapp LA. Social correlates of testosterone and ornamentation in male mandrills. Horm Behav 2008; 54:365 - 72; http://dx.doi.org/10.1016/j.yhbeh.2008.05.004; PMID: 18582885
  • Dixson AF. Sexual selection and evolution of the seminal vesicles in primates. Folia Primatol (Basel) 1998; 69:300 - 6; http://dx.doi.org/10.1159/000021643; PMID: 9751836
  • Gerald MS. Primate colour predicts social status and aggressive outcome. Anim Behav 2001; 61:559 - 66; http://dx.doi.org/10.1006/anbe.2000.1648
  • Gartlan JS, Brain CK. Ecology and social variability in Cercopithecus aethiops and C. mitis. In: Jay P, ed. Primates. New York:Holt, Rinehart and Winston, 1968.
  • Andersson M, ed. Sexual selection. Princeton:Princeton University Press, 1994.
  • Tovee MJ. The molecular genetics and evolution of primate colour vision. Trends Neurosci 1994; 17:30 - 7; http://dx.doi.org/10.1016/0166-2236(94)90032-9; PMID: 7511848
  • Fernandez AA, Morris MR. Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. Am Nat 2007; 170:10 - 20; http://dx.doi.org/10.1086/518566; PMID: 17853988
  • Jacobs GH. A perspective on color vision in platyrrhine monkeys. Vision Res 1998; 38:3307 - 13; http://dx.doi.org/10.1016/S0042-6989(97)00405-7; PMID: 9893842
  • Jacobs GH, Neitz M, Deegan JF, Neitz J. Trichromatic colour vision in New World monkeys. Nature 1996; 382:156 - 8; http://dx.doi.org/10.1038/382156a0; PMID: 8700203
  • Mollon JD, Bowmaker JK, Jacobs GH. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci 1984; 222:373 - 99; http://dx.doi.org/10.1098/rspb.1984.0071; PMID: 6149558
  • Tan Y, Li WH. Trichromatic vision in prosimians. Nature 1999; 402:36; http://dx.doi.org/10.1038/46947; PMID: 10573416
  • Jacobs GH, Deegan JF 2nd, Tan Y, Li WH. Opsin gene and photopigment polymorphism in a prosimian primate. Vision Res 2002; 42:11 - 8; http://dx.doi.org/10.1016/S0042-6989(01)00264-4; PMID: 11804627
  • Caine NG, Mundy NI. Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proc Biol Sci 2000; 267:439 - 44; http://dx.doi.org/10.1098/rspb.2000.1019; PMID: 10737399
  • Caine NG, Osorio D, Mundy NI. A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol Lett 2010; 6:36 - 8; http://dx.doi.org/10.1098/rsbl.2009.0591; PMID: 19740895
  • Regan BC, Julliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD. Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B Biol Sci 2001; 356:229 - 83; http://dx.doi.org/10.1098/rstb.2000.0773; PMID: 11316480
  • Surridge AK, Osorio D, Mundy NI. Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 2003; 18:198 - 205; http://dx.doi.org/10.1016/S0169-5347(03)00012-0
  • Changizi MA, Zhang Q, Shimojo S. Bare skin, blood and the evolution of primate colour vision. Biol Lett 2006; 2:217 - 21; http://dx.doi.org/10.1098/rsbl.2006.0440; PMID: 17148366
  • Waitt C, Little AC, Wolfensohn S, Honess P, Brown AP, Buchanan-Smith HM, et al. Evidence from rhesus macaques suggests that male coloration plays a role in female primate mate choice. Proc Biol Sci 2003; 270:Suppl 2 S144 - 6; http://dx.doi.org/10.1098/rsbl.2003.0065; PMID: 14667364
  • Wells DL, McDonald CL, Ringland JE. Color preferences in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes). J Comp Psychol 2008; 122:213 - 9; http://dx.doi.org/10.1037/0735-7036.122.2.213; PMID: 18489237
  • Genschow O, Reutner L, Wänke M. The color red reduces snack food and soft drink intake. Appetite 2012; 58:699 - 702; http://dx.doi.org/10.1016/j.appet.2011.12.023; PMID: 22245725
  • Elliot AJ, Maier MA. Color and psychological functioning. Curr Dir Psychol Sci 2007; 16:250 - 4; http://dx.doi.org/10.1111/j.1467-8721.2007.00514.x
  • Bergman TJ, Ho L, Beehner JC. Chest color and social status in male geladas (Theropithecus gelada). Int J Primatol 2009; 30:791 - 806; http://dx.doi.org/10.1007/s10764-009-9374-x
  • Hill RA, Barton RA. Psychology: red enhances human performance in contests. Nature 2005; 435:293; http://dx.doi.org/10.1038/435293a; PMID: 15902246
  • Altmann J. Observational study of behavior: sampling methods. Behaviour 1974; 49:227 - 67; http://dx.doi.org/10.1163/156853974X00534; PMID: 4597405
  • Siegel S, Castellan NJ, eds. Non parametric Statistics for the Behavioural Sciences. 2nd Edition. London:MacGraw-Hill, 1992:399.