657
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Genome wide comparative comprehensive analysis of Plasmodium falciparum MCM family with human host

&
Pages 607-615 | Published online: 01 Nov 2012

References

  • Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 1984; 106:365 - 85; PMID: 6323245
  • Hennessy KM, Lee A, Chen E, Botstein D. A group of interacting yeast DNA replication genes. Genes Dev 1991; 5:958 - 69; http://dx.doi.org/10.1101/gad.5.6.958; PMID: 2044962
  • Takahashi K, Yamada H, Yanagida M. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 1994; 5:1145 - 58; PMID: 7865880
  • Gómez EB, Catlett MG, Forsburg SL. Different phenotypes in vivo are associated with ATPase motif mutations in Schizosaccharomyces pombe minichromosome maintenance proteins. Genetics 2002; 160:1305 - 18; PMID: 11973289
  • Schwacha A, Bell SP. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell 2001; 8:1093 - 104; http://dx.doi.org/10.1016/S1097-2765(01)00389-6; PMID: 11741544
  • Bochman ML, Schwacha A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 2009; 73:652 - 83; http://dx.doi.org/10.1128/MMBR.00019-09; PMID: 19946136
  • Treisman R, Ammerer G. The SRF and MCM1 transcription factors. Curr Opin Genet Dev 1992; 2:221 - 6; http://dx.doi.org/10.1016/S0959-437X(05)80277-1; PMID: 1638115
  • Koonin EV. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 1993; 21:2541 - 7; http://dx.doi.org/10.1093/nar/21.11.2541; PMID: 8332451
  • Iyer LM, Leipe DD, Koonin EV, Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004; 146:11 - 31; http://dx.doi.org/10.1016/j.jsb.2003.10.010; PMID: 15037234
  • Frickey T, Lupas AN. Phylogenetic analysis of AAA proteins. J Struct Biol 2004; 146:2 - 10; http://dx.doi.org/10.1016/j.jsb.2003.11.020; PMID: 15037233
  • Erzberger JP, Berger JM. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 2006; 35:93 - 114; http://dx.doi.org/10.1146/annurev.biophys.35.040405.101933; PMID: 16689629
  • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002; 71:333 - 74; http://dx.doi.org/10.1146/annurev.biochem.71.110601.135425; PMID: 12045100
  • Aparicio OM, Weinstein DM, Bell SP. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 1997; 91:59 - 69; http://dx.doi.org/10.1016/S0092-8674(01)80009-X; PMID: 9335335
  • Aparicio OM, Stout AM, Bell SP. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci U S A 1999; 96:9130 - 5; http://dx.doi.org/10.1073/pnas.96.16.9130; PMID: 10430907
  • Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, Young RA, et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 2001; 294:2357 - 60; http://dx.doi.org/10.1126/science.1066101; PMID: 11743203
  • Labib K, Tercero JA, Diffley JF. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 2000; 288:1643 - 7; http://dx.doi.org/10.1126/science.288.5471.1643; PMID: 10834843
  • Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 2004; 16:967 - 78; http://dx.doi.org/10.1016/j.molcel.2004.11.038; PMID: 15610739
  • Randell JC, Bowers JL, Rodríguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 2006; 21:29 - 39; http://dx.doi.org/10.1016/j.molcel.2005.11.023; PMID: 16387651
  • Donovan S, Harwood J, Drury LS, Diffley JF. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 1997; 94:5611 - 6; http://dx.doi.org/10.1073/pnas.94.11.5611; PMID: 9159120
  • Hua XH, Newport J. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J Cell Biol 1998; 140:271 - 81; http://dx.doi.org/10.1083/jcb.140.2.271; PMID: 9442103
  • Rowles A, Tada S, Blow JJ. Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J Cell Sci 1999; 112:2011 - 8; PMID: 10341218
  • Blow JJ, Gillespie PJ. Replication licensing and cancer--a fatal entanglement?. Nat Rev Cancer 2008; 8:799 - 806; http://dx.doi.org/10.1038/nrc2500; PMID: 18756287
  • Lau KM, Chan QK, Pang JC, Li KK, Yeung WW, Chung NY, et al. Minichromosome maintenance proteins 2, 3 and 7 in medulloblastoma: overexpression and involvement in regulation of cell migration and invasion. Oncogene 2010; 29:5475 - 89; http://dx.doi.org/10.1038/onc.2010.287; PMID: 20661220
  • Saydam O, Senol O, Schaaij-Visser TB, Pham TV, Piersma SR, Stemmer-Rachamimov AO, et al. Comparative protein profiling reveals minichromosome maintenance (MCM) proteins as novel potential tumor markers for meningiomas. J Proteome Res 2010; 9:485 - 94; http://dx.doi.org/10.1021/pr900834h; PMID: 19877719
  • Remus D, Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 2009; 21:771 - 7; http://dx.doi.org/10.1016/j.ceb.2009.08.002; PMID: 19767190
  • Gregan J, Lindner K, Brimage L, Franklin R, Namdar M, Hart EA, et al. Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol Biol Cell 2003; 14:3876 - 87; http://dx.doi.org/10.1091/mbc.E03-02-0090; PMID: 12972571
  • Tuteja N, Tran NQ, Dang HQ, Tuteja R. Plant MCM proteins: role in DNA replication and beyond. Plant Mol Biol 2011; 77:537 - 45; http://dx.doi.org/10.1007/s11103-011-9836-3; PMID: 22038093
  • Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 2011; 76:19 - 34; http://dx.doi.org/10.1007/s11103-011-9758-0; PMID: 21365356
  • Arnot DE, Gull K. The Plasmodium cell-cycle: facts and questions. Ann Trop Med Parasitol 1998; 92:361 - 5; http://dx.doi.org/10.1080/00034989859357; PMID: 9683889
  • Tuteja R. Malaria - an overview. FEBS J 2007; 274:4670 - 9; http://dx.doi.org/10.1111/j.1742-4658.2007.05997.x; PMID: 17824953
  • Bannister L, Mitchell G. The ins, outs and roundabouts of malaria. Trends Parasitol 2003; 19:209 - 13; http://dx.doi.org/10.1016/S1471-4922(03)00086-2; PMID: 12763426
  • Li JL, Cox LS. Identification of an MCM4 homologue expressed specifically in the sexual stage of Plasmodium falciparum.. Int J Parasitol 2001; 31:1246 - 52; http://dx.doi.org/10.1016/S0020-7519(01)00237-5; PMID: 11513894
  • Patterson S, Robert C, Whittle C, Chakrabarti R, Doerig C, Chakrabarti D. Pre-replication complex organization in the atypical DNA replication cycle of Plasmodium falciparum: characterization of the mini-chromosome maintenance (MCM) complex formation. Mol Biochem Parasitol 2006; 145:50 - 9; http://dx.doi.org/10.1016/j.molbiopara.2005.09.006; PMID: 16257456
  • Ramakrishnan C, Dani VS, Ramasarma T. A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. Protein Eng 2002; 15:783 - 98; http://dx.doi.org/10.1093/protein/15.10.783; PMID: 12468712
  • Komamura-Kohno Y, Tanaka R, Omori A, Kohno T, Ishimi Y. Biochemical characterization of fragmented human MCM2. FEBS J 2008; 275:727 - 38; http://dx.doi.org/10.1111/j.1742-4658.2007.06239.x; PMID: 18190532
  • Lin DI, Aggarwal P, Diehl JA. Phosphorylation of MCM3 on Ser-112 regulates its incorporation into the MCM2-7 complex. Proc Natl Acad Sci U S A 2008; 105:8079 - 84; http://dx.doi.org/10.1073/pnas.0800077105; PMID: 18524952
  • Li J, Deng M, Wei Q, Liu T, Tong X, Ye X. Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle. J Biol Chem 2011; 286:39776 - 85; http://dx.doi.org/10.1074/jbc.M111.226464; PMID: 21965652
  • Komamura-Kohno Y, Karasawa-Shimizu K, Saitoh T, Sato M, Hanaoka F, Tanaka S, et al. Site-specific phosphorylation of MCM4 during the cell cycle in mammalian cells. FEBS J 2006; 273:1224 - 39; http://dx.doi.org/10.1111/j.1742-4658.2006.05146.x; PMID: 16519687
  • Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 2012; 122:814 - 20; http://dx.doi.org/10.1172/JCI60224; PMID: 22354170
  • Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 2012; 122:821 - 32; http://dx.doi.org/10.1172/JCI61014; PMID: 22354167
  • Ferguson RL, Maller JL. Cyclin E-dependent localization of MCM5 regulates centrosome duplication. J Cell Sci 2008; 121:3224 - 32; http://dx.doi.org/10.1242/jcs.034702; PMID: 18799789
  • Ferguson RL, Pascreau G, Maller JL. The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication. J Cell Sci 2010; 123:2743 - 9; http://dx.doi.org/10.1242/jcs.073098; PMID: 20663915
  • Giaginis C, Giagini A, Tsourouflis G, Gatzidou E, Agapitos E, Kouraklis G, et al. MCM-2 and MCM-5 expression in gastric adenocarcinoma: clinical significance and comparison with Ki-67 proliferative marker. Dig Dis Sci 2011; 56:777 - 85; http://dx.doi.org/10.1007/s10620-010-1348-5; PMID: 20694513
  • Zhang J, Yu L, Wu X, Zou L, Sou KK, Wei Z, et al. The interacting domains of hCdt1 and hMcm6 involved in the chromatin loading of the MCM complex in human cells. Cell Cycle 2010; 9:4848 - 57; http://dx.doi.org/10.4161/cc.9.24.14136; PMID: 21099365
  • Xu J, Zhang S, You C, Huang S, Cai B, Wang X. Expression of human MCM6 and DNA Topo II alpha in craniopharyngiomas and its correlation with recurrence of the tumor. J Neurooncol 2007; 83:183 - 9; http://dx.doi.org/10.1007/s11060-006-9284-0; PMID: 17410335
  • Toyokawa G, Masuda K, Daigo Y, Cho HS, Yoshimatsu M, Takawa M, et al. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer 2011; 10:65; http://dx.doi.org/10.1186/1476-4598-10-65; PMID: 21619671
  • Doerig C, Chakrabarti D, Kappes B, Matthews K. The cell cycle in protozoan parasites. Prog Cell Cycle Res 2000; 4:163 - 83; http://dx.doi.org/10.1007/978-1-4615-4253-7_15; PMID: 10740824
  • Gozuacik D, Chami M, Lagorce D, Faivre J, Murakami Y, Poch O, et al. Identification and functional characterization of a new member of the human Mcm protein family: hMcm8. Nucleic Acids Res 2003; 31:570 - 9; http://dx.doi.org/10.1093/nar/gkg136; PMID: 12527764
  • Volkening M, Hoffmann I. Involvement of human MCM8 in prereplication complex assembly by recruiting hcdc6 to chromatin. Mol Cell Biol 2005; 25:1560 - 8; http://dx.doi.org/10.1128/MCB.25.4.1560-1568.2005; PMID: 15684404
  • Kinoshita Y, Johnson EM, Gordon RE, Negri-Bell H, Evans MT, Coolbaugh J, et al. Colocalization of MCM8 and MCM7 with proteins involved in distinct aspects of DNA replication. Microsc Res Tech 2008; 71:288 - 97; http://dx.doi.org/10.1002/jemt.20553; PMID: 18072282
  • Yoshida K. Identification of a novel cell-cycle-induced MCM family protein MCM9. Biochem Biophys Res Commun 2005; 331:669 - 74; http://dx.doi.org/10.1016/j.bbrc.2005.03.222; PMID: 15850810
  • Lutzmann M, Maiorano D, Méchali M. Identification of full genes and proteins of MCM9, a novel, vertebrate-specific member of the MCM2-8 protein family. Gene 2005; 362:51 - 6; http://dx.doi.org/10.1016/j.gene.2005.07.031; PMID: 16226853
  • Lutzmann M, Méchali M. MCM9 binds Cdt1 and is required for the assembly of prereplication complexes. Mol Cell 2008; 31:190 - 200; http://dx.doi.org/10.1016/j.molcel.2008.07.001; PMID: 18657502
  • Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS. The structure and function of MCM from archaeal M. Thermoautotrophicum.. Nat Struct Biol 2003; 10:160 - 7; http://dx.doi.org/10.1038/nsb893; PMID: 12548282
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605 - 12; http://dx.doi.org/10.1002/jcc.20084; PMID: 15264254
  • Pereverzeva I, Whitmire E, Khan B, Coué M. Distinct phosphoisoforms of the Xenopus Mcm4 protein regulate the function of the Mcm complex. Mol Cell Biol 2000; 20:3667 - 76; http://dx.doi.org/10.1128/MCB.20.10.3667-3676.2000; PMID: 10779356
  • Ishimi Y, Komamura-Kohno Y. Phosphorylation of Mcm4 at specific sites by cyclin-dependent kinase leads to loss of Mcm4,6,7 helicase activity. J Biol Chem 2001; 276:34428 - 33; http://dx.doi.org/10.1074/jbc.M104480200; PMID: 11454864
  • Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004; 4:1633 - 49; http://dx.doi.org/10.1002/pmic.200300771; PMID: 15174133
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009; 37:Web Server issue W202-8; http://dx.doi.org/10.1093/nar/gkp335; PMID: 19458158