1,439
Views
17
CrossRef citations to date
0
Altmetric
Short Communication

Exploring vortex enhancement and manipulation mechanisms in jellyfish that contributes to energetically efficient propulsion

, &
Article: e29014 | Received 20 Dec 2013, Accepted 24 Apr 2014, Published online: 01 May 2014

References

  • Dickinson MH, Lighton JR. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 1995; 268:87 - 90; http://dx.doi.org/10.1126/science.7701346; PMID: 7701346
  • Alexander RM, Bennet-Clark HC. Storage of elastic strain energy in muscle and other tissues. Nature 1977; 265:114 - 7; http://dx.doi.org/10.1038/265114a0; PMID: 834252
  • Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol 1977; 268:467 - 81; PMID: 874922
  • Asmussen E, Bonde-Petersen F. Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 1974; 92:537 - 45; http://dx.doi.org/10.1111/j.1748-1716.1974.tb05776.x; PMID: 4455009
  • Blickhan R, Cheng J-Y. Energy storage by elastic mechanisms in the tail of large swimmers—a re-evaluation. J Theor Biol 1994; 168:315 - 21; http://dx.doi.org/10.1006/jtbi.1994.1112
  • Weimerskirch H, Martin J, Clerquin Y, Alexandre P, Jiraskova S. Energy saving in flight formation. Nature 2001; 413:697 - 8; http://dx.doi.org/10.1038/35099670; PMID: 11607019
  • Cutts C, Speakman J. Energy savings in formation flight of pink-footed geese. J Exp Biol 1994; 189:251 - 61; PMID: 9317742
  • Lissaman PB, Shollenberger CA. Formation flight of birds. Science 1970; 168:1003 - 5; http://dx.doi.org/10.1126/science.168.3934.1003; PMID: 5441020
  • Herskin J, Steffensen J. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. J Fish Biol 1998; 53:366 - 76; http://dx.doi.org/10.1111/j.1095-8649.1998.tb00986.x
  • Streitlien K, Triantafyllou GS, Triantafyllou MS. Efficient foil propulsion through vortex control. AIAA J 1996; 34:2315 - 9; http://dx.doi.org/10.2514/3.13396
  • Anderson J, Streitlien K, Barrett D, Triantafyllou M. Oscillating foils of high propulsive efficiency. J Fluid Mech 1998; 360:41 - 72; http://dx.doi.org/10.1017/S0022112097008392
  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 2003; 206:1059 - 73; http://dx.doi.org/10.1242/jeb.00209; PMID: 12582148
  • Koch F, Wieser W. Partitioning of energy in fish: Can reduction of swimming activity compensate for the cost of production?. J Exp Biol 1983; 107:141 - 6
  • Heathcote S, Wang Z, Gursul I. Effect of spanwise flexibility on flapping wing propulsion. J Fluids Structures 2008; 24:183 - 99; http://dx.doi.org/10.1016/j.jfluidstructs.2007.08.003
  • Taylor GS, Gursul I. Lift enhancement over a flexible delta wing. 2nd AIAA Flow Control Conference, Portland, OR, AIAA Paper, 2004.
  • Colin SP, Costello JH, Dabiri JO, Villanueva A, Blottman JB, Gemmell BJ, Priya S. Biomimetic and live medusae reveal the mechanistic advantages of a flexible bell margin. PLoS One 2012; 7:e48909; http://dx.doi.org/10.1371/journal.pone.0048909; PMID: 23145016
  • Lauder GV, Madden PG. Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp Fluids 2007; 43:641 - 53; http://dx.doi.org/10.1007/s00348-007-0357-4
  • Schmidt-Nielsen K. Locomotion: energy cost of swimming, flying, and running. Science 1972; 177:222 - 8; http://dx.doi.org/10.1126/science.177.4045.222; PMID: 4557340
  • Tucker VA. The energetic cost of moving about. Am Sci 1975; 63:413 - 9; PMID: 1137237
  • Dabiri JO, Colin SP, Katija K, Costello JH. A wake-based correlate of swimming performance and foraging behavior in seven co-occurring jellyfish species. J Exp Biol 2010; 213:1217 - 25; http://dx.doi.org/10.1242/jeb.034660; PMID: 20348332
  • Larson R. Costs of transport for the scyphomedusa Stomolophus meleagris L. Agassiz. Can J Zool 1987; 65:2690 - 5; http://dx.doi.org/10.1139/z87-408
  • Gemmell BJ, Costello JH, Colin SP, Stewart CJ, Dabiri JO, Tafti D, Priya S. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc Natl Acad Sci U S A 2013; 110:17904 - 9; http://dx.doi.org/10.1073/pnas.1306983110; PMID: 24101461
  • Dabiri JO, Colin SP, Costello JH, Gharib M. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 2005; 208:1257 - 65; http://dx.doi.org/10.1242/jeb.01519; PMID: 15781886
  • Gemmell BJ, Sheng J, Buskey EJ. Compensatory escape mechanism at low Reynolds number. Proc Natl Acad Sci U S A 2013; 110:4661 - 6; http://dx.doi.org/10.1073/pnas.1212148110; PMID: 23487740
  • Seuront L, Vincent D, Mitchell JG. Biologically induced modification of seawater viscosity in the Eastern English Channel during a< i> Phaeocystis globosa</i> spring bloom. J Mar Syst 2006; 61:118 - 33; http://dx.doi.org/10.1016/j.jmarsys.2005.04.010
  • Satterlie R, Spencer A. Swimming control in a cubomedusan jellyfish. 1979
  • Hündgen M, Biela C. Fine structure of touch-plates in the scyphomedusan Aurelia aurita. J Ultrastruct Res 1982; 80:178 - 84; http://dx.doi.org/10.1016/S0022-5320(82)90016-8; PMID: 6126597
  • Shanks AL, Graham WM. Orientated swimming in the jellyfish< i> Stomolopus meleagris</i> L. Agassiz (Scyphozoan: Rhizostomida). J Exp Mar Biol Ecol 1987; 108:159 - 69; http://dx.doi.org/10.1016/S0022-0981(87)80020-5
  • Shyy W, Liu H. Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J 2007; 45:2817 - 9; http://dx.doi.org/10.2514/1.33205