761
Views
19
CrossRef citations to date
0
Altmetric
Review

The “acrosomal synapse”

Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa

, , , , , , & show all
Pages 513-521 | Received 28 May 2010, Accepted 23 Jul 2010, Published online: 01 Nov 2010

References

  • Ikawa M, Inoue N, Benham AM, Okabe M. Fertilization: a sperm's journey to and interaction with the oocyte. J Clin Invest 2010; 120:984 - 994
  • Austin CR. The capacitation of the mammalian sperm. Nature 1952; 170:326
  • Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 1951; 168:697 - 698
  • Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update 2008;
  • Luconi M, Baldi E. How do sperm swim? Molecular mechanisms underlying sperm motility. Cell Mol Biol (Noisy-le-Grand, France) 2003; 49:357 - 369
  • Kim E, Yamashita M, Kimura M, Honda A, Kashiwabara S, Baba T. Sperm penetration through cumulus mass and Zona pellucida. Int J Dev Biol 2008; 52:677 - 682
  • Travis AJ, Kopf GS. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest 2002; 110:731 - 736
  • Abou-Haila A, Tulsiani DR. Evidence for the capacitation-associated membrane priming of mouse spermatozoa. Histochem Cell Biol 2003; 119:179 - 187
  • Wassarman PM, Litscher ES. Mammalian fertilization: the eggs multifunctional Zona pellucida. Int J Dev Biol 2008; 52:665 - 676
  • Harper CV, Cummerson JA, White MR, Publicover SJ, Johnson PM. Dynamic resolution of acrosomal exocytosis in human sperm. J Cell Sci 2008; 121:2130 - 2135
  • Florman HM, Jungnickel MK, Sutton KA. Regulating the acrosome reaction. Int J Dev Biol 2008; 52:503 - 510
  • Mayorga LS, Tomes CN, Belmonte SA. Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 2007; 59:286 - 292
  • Rothman JE. Mechanisms of intracellular protein transport. Nature 1994; 372:55 - 63
  • Jahn R. Principles of exocytosis and membrane fusion. Ann NY Acad Sci 2004; 1014:170 - 178
  • Sudhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 1995; 375:645 - 653
  • Ackermann F, Zitranski N, Borth H, Buech T, Gudermann T, Boekhoff I. CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci 2009; 122:4547 - 4557
  • Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009; 323:474 - 477
  • Brose N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 2008; 9:1403 - 1413
  • Rolls MM, Satoh D, Clyne PJ, Henner AL, Uemura T, Doe CQ. Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev 2007; 2:7
  • Kennedy B, Malicki J. What drives cell morphogenesis: a look inside the vertebrate photoreceptor. Dev Dyn 2009; 238:2115 - 2138
  • Nejsum LN, Nelson WJ. Epithelial cell surface polarity: the early steps. Front Biosci 2009; 14:1088 - 1098
  • Roodbeen R, van Hest JC. Synthetic cells and organelles: compartmentalization strategies. Bioessays 2009; 31:1299 - 1308
  • Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci 2002; 25:412 - 417
  • Benarroch EE. Lipid rafts, protein scaffolds and neurologic disease. Neurology 2007; 69:1635 - 639
  • Burack WR, Shaw AS. Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000; 12:211 - 216
  • Kreienkamp HJ. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 2008; 365 - 380
  • Glynne PA, Evans TJ. Role of the PDZ scaffolding protein in tubule cells in maintenance of polarised function. Exp Nephrol 2002; 10:307 - 312
  • Ikonen E, Simons K. Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol 1998; 9:503 - 509
  • Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68:533 - 544
  • Calder PC, Yaqoob P. Lipid rafts—composition, characterization and controversies. J Nutr 2007; 137:545 - 547
  • Lingwood D, Kaiser HJ, Levental I, Simons K. Lipid rafts as functional heterogeneity in cell membranes. Biochem Soc Trans 2009; 37:955 - 960
  • Shogomori H, Brown DA. Use of detergents to study membrane rafts: the good, the bad and the ugly. Biol Chem 2003; 384:1259 - 1263
  • Ostrom RS, Liu X. Detergent and detergent-free methods to define lipid rafts and caveolae. Methods Cell Sci 2007; 400:459 - 468
  • Brown DA. Lipid rafts, detergent-resistant membranes and raft targeting signals. Physiology 2006; 21:430 - 439
  • Lingwood D, Simons K. Detergent resistance as a tool in membrane research. Nat Protoc 2007; 2:2159 - 2165
  • Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 2009; 185:381 - 385
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569 - 572
  • Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin Immunol 2005; 17:3 - 21
  • Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Nasir UdD. Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J 2000; 17:191 - 197
  • Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci 2005; 118:1099 - 1102
  • Chini B, Parenti M. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?. J Mol Endocrinol 2004; 32:325 - 338
  • Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 2009; 45:625 - 633
  • Ohta K, Sato C, Matsuda T, Toriyama M, Vacquier VD, Lennarz WJ, et al. Co-localization of receptor and transducer proteins in the glycosphingolipid-enriched, low density, detergent-insoluble membrane fraction of sea urchin sperm. Glycoconj J 2000; 17:205 - 214
  • Belton RJ Jr, Adams NL, Foltz KR. Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization. Mol Reprod Dev 2001; 59:294 - 305
  • Couet J, Belanger MM, Roussel E, Drolet MC. Cell biology of caveolae and caveolin. Adv Drug Deliv Rev 2001; 49:223 - 235
  • Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med 2004; 36:584 - 595
  • Langhorst MF, Reuter A, Stuermer CA. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 2005; 62:2228 - 2240
  • Trevino CL, Serrano CJ, Beltran C, Felix R, Darszon A. Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 2001; 509:119 - 125
  • Travis AJ, Merdiushev T, Vargas LA, Jones BH, Purdon MA, Nipper RW, et al. Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev Biol 2001; 240:599 - 610
  • Gamboa S, Ramalho-Santos J. SNARE proteins and caveolin-1 in stallion spermatozoa: possible implications for fertility. Theriogenology 2005; 64:275 - 291
  • Cross NL. Reorganization of lipid rafts during capacitation of human sperm. Biol Reprod 2004; 71:1367 - 1373
  • Sleight SB, Miranda PV, Plaskett NW, Maier B, Lysiak J, Scrable H, et al. Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: evidence for dissociation of lipid rafts during capacitation. Biol Reprod 2005; 73:721 - 729
  • van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM. Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod 2005; 11:583 - 590
  • Miranda PV, Allaire A, Sosnik J, Visconti PE. Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol Reprod 2009; 80:897 - 904
  • Tanphaichitr N, Carmona E, Bou Khalil M, Xu H, Berger T, Gerton GL. New insights into sperm-Zona pellucida interaction: involvement of sperm lipid rafts. Front Biosci 2007; 12:1748 - 1766
  • Bou Khalil M, Chakrabandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, et al. Sperm capacitation induces an increase in lipid rafts having Zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol 2006; 290:220 - 235
  • Boerke A, Tsai PS, Garcia-Gil N, Brewis IA, Gadella BM. Capacitation-dependent reorganization of micro-domains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology 2008; 70:1188 - 1196
  • Gadella BM, Tsai PS, Boerke A, Brewis IA. Sperm head membrane reorganisation during capacitation. Int J Dev Biol 2008; 52:473 - 480
  • Jones R, Howes E, Dunne PD, James P, Bruckbauer A, Klenerman D. Tracking diffusion of GM1 gangliosides and Zona pellucida binding molecules in sperm plasma membranes following cholesterol efflux. Dev Biol 2010; 339:398 - 406
  • Nixon B, Bielanowicz A, McLaughlin EA, Tanphaichitr N, Ensslin MA, Aitken RJ. Composition and significance of detergent resistant membranes in mouse spermatozoa. J Cell Physiol 2009; 218:122 - 134
  • Nixon B, Aitken RJ. The biological significance of detergent-resistant membranes in spermatozoa. J Reprod Immunol 2009; 83:8 - 13
  • Shadan S, James PS, Howes EA, Jones R. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 2004; 71:253 - 265
  • Krummel MF, Cahalan MD. The immunological synapse: a dynamic platform for local signaling. J Clin Immunol 2010; 30:364 - 372
  • Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Location is everything: lipid rafts and immune cell signaling. Ann Rev Immunol 2003; 21:457 - 481
  • Viola A, Contento RL, Molon B. Signaling amplification at the immunological synapse. Curr Top Microbiol Immunol 2010; 340:109 - 122
  • Tsunoda S, Zuker CS. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 1999; 26:165 - 171
  • Shaw AS, Filbert EL. Scaffold proteins and immune-cell signalling. Nat Rev Immunol 2009; 9:47 - 56
  • Smith FD, Scott JD. Signaling complexes: junctions on the intracellular information super highway. Curr Biol 2002; 12:32 - 40
  • Songyang Z. Recognition and regulation of primary-sequence motifs by signaling modular domains. Prog Biophys Mol Biol 1999; 71:359 - 372
  • Zarrinpar A, Park SH, Lim WA. Optimization of specificity in a cellular protein interaction network by negative selection. Nature 2003; 426:676 - 680
  • Fanning AS, Anderson JM. Protein-protein interactions: PDZ domain networks. Curr Biol 1996; 6:1385 - 1388
  • Ranganathan R, Ross EM. PDZ domain proteins: scaffolds for signaling complexes. Curr Biol 1997; 7:770 - 773
  • Fan JS, Zhang M. Signaling complex organization by PDZ domain proteins. Neurosignals 2002; 11:315 - 321
  • Cho KO, Hunt CA, Kennedy MB. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 1992; 9:929 - 942
  • Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 1991; 66:451 - 464
  • Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S, Tsukita S. The 220 kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993; 121:491 - 502
  • Doyle DA, Lee A, Lewis J, Kim E, Sheng M. MacKinnon R, Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 1996; 85:1067 - 1076
  • Jemth P, Gianni S. PDZ domains: folding and binding. Biochemistry 2007; 46:8701 - 8708
  • Saras J, Heldin CH. PDZ domains bind carboxyterminal sequences of target proteins. Trends Biochem Sci 1996; 21:455 - 458
  • Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001; 24:1 - 29
  • Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural diversity of PDZ-lipid interactions. Chembiochem 2010; 11:456 - 467
  • Nourry C, Grant SG, Borg JP. PDZ domain proteins: plug and play!. Sci STKE 2003; 2003:7
  • Harris BZ, Lim WA. Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 2001; 114:3219 - 3231
  • Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, et al. MARCH-XI, a novel trans-membrane ubiquitin ligase implicated in ubiquitindependent protein sorting in developing spermatids. J Biol Chem 2007; 282:24806 - 24815
  • Fujita E, Tanabe Y, Hirose T, Aurrand-Lions M, Kasahara T, Imhof BA, et al. Loss of partitioningdefective-3/isotype-specific interacting protein (par-3/ASIP) in the elongating spermatid of RA175 (IGSF4A/SynCAM)-deficient mice. Am J Pathol 2007; 171:1800 - 1810
  • Suzuki-Toyota F, Ito C, Toyama Y, Maekawa M, Yao R, Noda T, et al. Factors maintaining normal sperm tail structure during epididymal maturation studied in Gopc−/− mice. Biol Reprod 2007; 77:71 - 82
  • Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, et al. Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 2002; 99:11211 - 11216
  • Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, et al. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 2009; 119:802 - 812
  • Irino Y, Ichinohe M, Nakamura Y, Nakahara M, Fukami K. Phospholipase Cdelta4 associates with glutamate receptor interacting protein 1 in testis. J Biochem 2005; 138:451 - 456
  • Fujita A, Nakamura K, Kato T, Watanabe N, Ishizaki T, Kimura K, et al. Ropporin, a sperm-specific binding protein of rhophilin, that is localized in the fibrous sheath of sperm flagella. J Cell Sci 2000; 113:103 - 112
  • Burkin HR, Zhao L, Miller DJ. CASK is in the mammalian sperm head and is processed during epididymal maturation. Mol Reprod Dev 2004; 68:500 - 506
  • Hsueh YP. The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem 2006; 13:1915 - 1927
  • Atasoy D, Schoch S, Ho A, Nadasy KA, Liu X, Zhang W, et al. Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci USA 2007; 104:2525 - 2530
  • Biederer T, Sudhof TC. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem 2000; 275:39803 - 39806
  • Okamoto M, Sudhof TC. Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem 1997; 272:31459 - 1464
  • Tabuchi K, Biederer T, Butz S, Sudhof TC. CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J Neurosci 2002; 22:4264 - 4273
  • Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 2002; 297:1525 - 1531
  • Heydecke D, Meyer D, Ackermann F, Wilhelm B, Gudermann T, Boekhoff I. The multi PDZ domain protein MUPP1 as a putative scaffolding protein for organizing signaling complexes in the acrosome of mammalian spermatozoa. J Androl 2006; 27:390 - 404
  • Ullmer C, Schmuck K, Figge A, Lubbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 1998; 424:63 - 68
  • Becamel C, Figge A, Poliak S, Dumuis A, Peles E, Bockaert J, et al. Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 2001; 276:12974 - 12982
  • Parker LL, Backstrom JR, Sanders-Bush E, Shieh BH. Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem 2003; 278:21576 - 21583
  • Dooley R, Baumgart S, Rasche S, Hatt H, Neuhaus EM. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zonaoccludens 1 (PDZ) scaffold multi-PDZ domain protein 1. FEBS J 2009; 276:7279 - 7290
  • Liew CW, Vockel M, Glassmeier G, Brandner JM, Fernandez-Ballester GJ, Schwarz JR, et al. Interaction of the human somatostatin receptor 3 with the multiple PDZ domain protein MUPP1 enables somatostatin to control permeability of epithelial tight junctions. FEBS Lett 2009; 583:49 - 54
  • Guillaume JL, Daulat AM, Maurice P, Levoye A, Migaud M, Brydon L, et al. The PDZ protein mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J Biol Chem 2008; 283:16762 - 6771
  • Sindic A, Huang C, Chen AP, Ding Y, Miller-Little WA, Che D, et al. MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents. Am J Physiol 2009; 297:36 - 45
  • Penzes P, Johnson RC, Sattler R, Zhang X, Huganir RL, Kambampati V, et al. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 2001; 29:229 - 242
  • Estevez MA, Henderson JA, Ahn D, Zhu XR, Poschmann G, Lubbert H, et al. The neuronal RhoA GEF, Tech, interacts with the synaptic multi-PDZdomain-containing protein, MUPP1. J Neurochem 2008; 106:1287 - 1297
  • Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A, et al. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZdomain-containing protein MUPP1 in vivo. Biochem J 2002; 361:525 - 536
  • Rama S, Krapivinsky G, Clapham DE, Medina I. The MUPP1-SynGAPalpha protein complex does not mediate activity-induced LTP. Mol Cell Neurosci 2008; 38:183 - 188
  • Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 2004; 43:563 - 574
  • Barritt DS, Pearn MT, Zisch AH, Lee SS, Javier RT, Pasquale EB, et al. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 2000; 79:213 - 224
  • Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 2000; 74:9680 - 9693
  • Massimi P, Gammoh N, Thomas M, Banks L. HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 2004; 23:8033 - 8039
  • Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 2005; 118:4283 - 4293
  • Mancini A, Koch A, Stefan M, Niemann H, Tamura T. The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity. FEBS Lett 2000; 482:54 - 58
  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 2002; 277:455 - 461
  • Jeansonne B, Lu Q, Goodenough DA, Chen YH. Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductance in epithelial cells. Cell Mol Biol 2003; 49:13 - 21
  • Coyne CB, Voelker T, Pichla SL, Bergelson JM. The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 2004; 279:48079 - 48084
  • Lanaspa MA, Andres-Hernando A, Rivard CJ, Dai Y, Berl T. Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells. Proc Natl Acad Sci USA 2008; 105:15797 - 157802
  • Sugihara-Mizuno Y, Adachi M, Kobayashi Y, Hamazaki Y, Nishimura M, Imai T, et al. Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes Cells 2007; 12:473 - 486
  • Ackermann F, Zitranski N, Heydecke D, Wilhelm B, Gudermann T, Boekhoff I. The Multi-PDZ domain protein MUPP1 as a lipid raft-associated scaffolding protein controlling the acrosome reaction in mammalian spermatozoa. J Cell Physiol 2008; 214:757 - 768
  • De Blas GA, Roggero CM, Tomes CN, Mayorga LS. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 2005; 3:323
  • Zanetti N, Mayorga LS. Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 2009; 81:396 - 405
  • Tulsiani DR, Abou-Haila A. Is sperm capacitation analogous to early phases of Ca2+-triggered membrane fusion in somatic cells and viruses?. Bioessays 2004; 26:281 - 290
  • Tsai PS, Garcia-Gil N, van Haeften T, Gadella BM. How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PloS One 2010; 5:11204
  • Wojcik SM, Brose N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 2007; 55:11 - 24
  • Specht CG, Triller A. The dynamics of synaptic scaffolds. Bioessays 2008; 30:1062 - 1074
  • Schoch S, Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue Res 2006; 326:379 - 391
  • Wang X, Hu B, Zieba A, Neumann NG, Kasper-Sonnenberg M, Honsbein A, et al. A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST and rim converge on the N-terminal domain of Munc13-1. J Neurosci 2009;; 29:12584 - 12596
  • Hata Y, Nakanishi H, Takai Y. Synaptic PDZ domain-containing proteins. Neurosci Res 1998; 32:1 - 7
  • Garner CC, Nash J, Huganir RL. PDZ domains in synapse assembly and signalling. Trends Cell Biol 2000; 10:274 - 280
  • Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev 2004; 5:771 - 781
  • Tomes CN. Molecular mechanisms of membrane fusion during acrosomal exocytosis. Soc Reprod Fertil 2007; 65:275 - 291
  • Barros C, Bedford JM, Franklin LE, Austin CR. Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol 1967; 34:1 - 5
  • Flechon JE. Sperm surface changes during the acrosome reaction as observed by freeze-fracture. Am J Anat 1985; 174:239 - 248
  • Wang ZW. Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol Neurobiol 2008; 38:153 - 166
  • Leal-Ortiz S, Waites CL, Terry-Lorenzo R, Zamorano P, Gundelfinger ED, Garner CC. Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. J Cell Biol 2008; 181:831 - 846
  • Bray D. Signaling complexes: biophysical constraints on intracellular communication. Ann Rev Biophys Biomol Struc 1998; 27:59 - 75
  • Gil C, Cubi R, Blasi J, Aguilera J. Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature. Biochem Biophys Res Commun 2006; 348:1334 - 1342
  • Lang T. SNARE proteins and ‘membrane rafts’. J Physiol 2007; 585:693 - 698