2,492
Views
155
CrossRef citations to date
0
Altmetric
Mini Review

Evolution of glycosaminoglycans

Comparative biochemical study

, &
Pages 150-158 | Received 20 Dec 2010, Accepted 20 Dec 2010, Published online: 01 Mar 2011

References

  • Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 2000; 10:518 - 527
  • Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2001; 71:435 - 471
  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 2003; 13:612 - 620
  • Rauch U, Kappler J. Chondroitin/dermatan sulfates in the central nervous system: their structures and functions in health and disease. Adv Pharmacol 2006; 53:337 - 356
  • Yamada S, Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol 2008; 5:289 - 301
  • DeAngelis PL. Evolution of glycosaminoglycans and their glycosyltransferases: Implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anat Rec 2002; 268:317 - 326
  • Gomes PB, Dietrich CP. Distribution of heparin and other sulfated glycosaminoglycans in vertebrates. Comp Biochem Physiol B 1982; 73:857 - 863
  • Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U. Domain structure of heparan sulfates from bovine organs. J Biol Chem 1996; 271:17804 - 17810
  • Kitagawa H, Tsutsumi K, Tone Y, Sugahara K. Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J Biol Chem 1997; 272:31377 - 31381
  • Warda M, Toida T, Zhang F, Sun P, Munoz E, Xie J, et al. Isolation and characterization of heparan sulfate from various murine tissues. Glycoconj J 2006; 23:555 - 563
  • Zhang F, Zhang Z, Thistle R, McKeen L, Hosoyama S, Toida T, et al. Structural characterization of glycosaminoglycans from zebrafish in different ages. Glycoconj J 2009; 26:211 - 218
  • Yamada S, Onishi M, Fujinawa R, Tadokoro Y, Okabayashi K, Asashima M, et al. Structural and functional changes of sulfated glycosaminoglycans in Xenopus laevis during embryogenesis. Glycobiology 2009; 19:488 - 498
  • Ohtake-Niimi S, Kondo S, Ito T, Kakehi S, Ohta T, Habuchi H, et al. Mice deficient in N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells. J Biol Chem 2010; 285:20793 - 20805
  • Uyama T, Kitagawa H, Sugahara K. Kamerling JP. Biosynthesis of glycosaminoglycans and proteoglycans. Comprehensive Glycoscience 2007; 3:Amsterdam Elsevier 79 - 104
  • Cássaro CMF, Dietrich CP. Distribution of sulfated mucopolysaccharides in invertebrates. J Biol Chem 1977; 252:2254 - 2261
  • Kinoshita A, Sugahara K. Microanalysis of glycosaminoglycan- derived oligosaccharides labeled with a fluorophore-2-aminobenzamide by high-performance liquid chromatography: application to disaccharide composition analysis and exosequencing of oligosaccharides. Anal Biochem 1999; 269:367 - 378
  • Toyoda H, Kinoshita-Toyoda A, Selleck SB. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that toutvelu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J Biol Chem 2000; 275:2269 - 2275
  • Karamanos NK, Axelsson S, Vanky P, Tzanakakis GN, Hjerpe A. Determination of hyaluronan and galactosaminoglycan disaccharides by high-performance capillary electrophoresis at the attomole level. Applications to analyses of tissue and cell culture proteoglycans. J Chromatogr A 1995; 696:295 - 305
  • Kitagawa H, Kinoshita A, Sugahara K. Microanalysis of glycosaminoglycan-derived disaccharides labeled with the fluorophore-2-aminoacridone by capillary electrophoresis and high-performance liquid chromatography. Anal Biochem 1995; 232:114 - 121
  • Coombe DR, Jakobsen KB, Parish CR. A role for sulfated polysaccharide recognition in sponge cell aggregation. Exp Cell Res 1987; 170:381 - 401
  • Parish CR, Jakobsen KB, Coombe DR, Bacic A. Isolation and characterization of cell adhesion molecules from the marine sponge, Ophlitaspongia tenuis. Biochim Biophys Acta 1991; 1073:56 - 64
  • Misevic GN, Burger MM. Carbohydrate-carbohydrate interactions of a novel acidic glycan can mediate sponge cell adhesion. J Biol Chem 1993; 268:4922 - 4929
  • Fernàndez-Busquets X, Burger MM. Circular proteoglycans from sponges: first members of the spongican family. Cell Mol Life Sci 2003; 60:88 - 112
  • Hori I. Localization of newly synthesized precursors of basal lamina in the regenerating planarian as revealed by autoradiography. Tissue Cell 1980; 12:513 - 521
  • Yamada S, Morimoto H, Fujisawa T, Sugahara K. Glycosaminoglycans in Hydra magnipapillata (Hydrozoa, Cnidaria): demonstration of chondroitin in the developing nematocyst, the sting organelle and structural characterization of glycosaminoglycans. Glycobiology 2007; 17:886 - 894
  • Adamczyk P, Zenkert C, Balasubramanian PG, Yamada S, Murakoshi S, Sugahara K, et al. A non-sulfated chondroitin stabilizes membrane tubulation in cnidarian organelles. J Biol Chem 2010; 285:25613 - 25623
  • Feta A, Do AT, Rentzsch F, Technau U, Kusche-Gullberg M. Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis. Biochem J 2009; 419:585 - 593
  • Yamada S, Van Die I, Van den Eijnden DH, Yokota A, Kitagawa H, Sugahara K. Demonstration of glycosaminoglycans in Caenorhabditis elegans. FEBS Lett 1999; 459:327 - 331
  • Kaneiwa T, Yamada S, Mizumoto S, Montaño AM, Mitani S, Sugahara K. Identification of a novel chondroitin hydrolase in Caenorhabditis elegans. J Biol Chem 2008; 283:14971 - 14979
  • Yamada S, Mizumoto S, Sugahara K. Chondroitin hydrolase in Caenorhabditis elegans. Trends Glycosci Glycotechnol 2009; 21:149 - 162
  • Hwang HY, Olson SK, Esko JD, Horvitz HR. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 2003; 423:439 - 443
  • Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 2003; 423:443 - 448
  • Izumikawa T, Kitagawa H, Mizuguchi S, Nomura KH, Nomura K, Tamura J, et al. Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. J Biol Chem 2004; 279:53755 - 53761
  • Bulik DA, Robbins PW. The Caenorhabditis elegans sqv genes and functions of proteoglycans in development. Biochim Biophys Acta 2002; 1573:247 - 257
  • Lane MC, Solursh M. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan. Dev Biol 1991; 143:389 - 397
  • Vilela-Silva AC, Werneck CC, Valente AP, Vacquier VD, Mourão PA. Embryos of the sea urchin Strongylocentrotus purpuratus synthesize a dermatan sulfate enriched in 4-O- and 6-O-disulfated galactosamine units. Glycobiology 2001; 11:433 - 440
  • Solursh M, Katow H. Initial characterization of sulfated macromolecules in the blastocoels of mesenchyme blastulae of Strongylocentrotus purpuratus and Lytechinus pictus. Dev Biol 1982; 94:326 - 336
  • Fujita K, Takechi E, Sakamoto N, Sumiyoshi N, Izumi S, Miyamoto T, et al. HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development. Mech Dev 2010; 127:235 - 245
  • Vieira RP, Mulloy B, Mourão PA. Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. J Biol Chem 1991; 266:13530 - 13536
  • Medeiros GF, Mendes A, Castro RA, Baú EC, Nader HB, Dietrich CP. Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. Biochim Biophys Acta 2000; 1475:287 - 294
  • Mourão PA, Pereira MS, Pavão MS, Mulloy B, Tollefsen DM, Mowinckel MC, et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem 1996; 271:23973 - 23984
  • Borsig L, Wang L, Cavalcante MC, Cardilo-Reis L, Ferreira PL, Mourão PA, et al. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. J Biol Chem 2007; 282:14984 - 14991
  • Fonseca RJ, Mourão PA. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thromb Haemost 2006; 96:822 - 829
  • Lu Y, Wang BL. The research progress of antitumorous effectiveness of Stichopus japonicus acid mucopolysaccharide in north of China. Am J Med Sci 2009; 337:195 - 198
  • Amaral HB, Mateus SH, Ferreira LC, Ribeiro CC, Palumbo-Junior A, Domingos MA, et al. Localization and characterization of sulfated glycosaminoglycans in the body of the earthworm Eisenia andrei (Oligochaeta, Annelida). Acta Histochem 2011; 113:442 - 452
  • Im AR, Park Y, Sim JS, Zhang Z, Liu Z, Linhardt RJ, et al. Glycosaminoglycans from earthworms (Eisenia andrei). Glycoconj J 2010; 27:249 - 257
  • Pavão MS, Mourão PA, Mulloy B, Tollefsen DM. A unique dermatan sulfate-like glycosaminoglycan from ascidian. Its structure and the effect of its unusual sulfation pattern on anticoagulant activity. J Biol Chem 1995; 270:31027 - 31036
  • Pavão MS, Aiello KR, Werneck CC, Silva LC, Valente AP, Mulloy B, et al. Highly sulfated dermatan sulfates from Ascidians. Structure versus anticoagulant activity of these glycosaminoglycans. J Biol Chem 1998; 273:27848 - 27857
  • Catlow KR, Deakin JA, Wei Z, Delehedde M, Fernig DG, Gherardi E, et al. Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulfate density. J Biol Chem 2008; 283:5235 - 5248
  • Xu CX, Jin H, Chung YS, Shin JY, Lee KH, Beck GR Jr, et al. Chondroitin sulfate extracted from ascidian tunic inhibits phorbol ester-induced expression of Inflammatory factors VCAM-1 and COX-2 by blocking NFkappaB activation in mouse skin. J Agric Food Chem 2008; 56:9667 - 9675
  • Tetsukawa A, Nakamura J, Fujiwara S. Identification of chondroitin/dermatan sulfotransferases in the protochordate, Ciona intestinalis. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:205 - 212
  • Cavalcante MC, Mourão PA, Pavão MS. Isolation and characterization of a highly sulfated heparan sulfate from ascidian test cells. Biochim Biophys Acta 1999; 1428:77 - 87
  • Cavalcante MC, Allodi S, Valente AP, Straus AH, Takahashi HK, Mourão PA, et al. Occurrence of heparin in the invertebrate Styela plicata (Tunicata) is restricted to cell layers facing the outside environment. An ancient role in defense?. J Biol Chem 2000; 275:36189 - 36196
  • Habuchi O, Sugiura K, Kawai N. Glucose branches in chondroitin sulfates from squid cartilage. J Biol Chem 1977; 252:4570 - 4576
  • Kinoshita A, Yamada S, Haslam SM, Morris HR, Dell A, Sugahara K. Novel tetrasaccharides isolated from squid cartilage chondroitin sulfate E contain unusual sulfated disaccharide units GlcA(3-O-sulfate)beta1-3GalNAc(6-O-sulfate) or GlcA(3-O-sulfate)beta1-3GalNAc. J Biol Chem 1997; 272:19656 - 19665
  • Kinoshita A, Yamada S, Haslam SM, Morris HR, Dell A, Sugahara K. Isolation and structural determination of novel sulfated hexasaccharides from squid cartilage chondroitin sulfate E that exhibits neuroregulatory activities. Biochemistry 2001; 40:12654 - 12665
  • Kinoshita-Toyoda A, Yamada S, Haslam SM, Khoo KH, Sugiura M, Morris HR, et al. Structural determination of five novel tetrasaccharides containing 3-O-sulfated D-glucuronic acid and two rare oligosaccharides containing a beta-D-glucose branch isolated from squid cartilage chondroitin sulfate E. Biochemistry 2004; 43:11063 - 11074
  • Shetty AK, Kobayashi T, Mizumoto S, Narumi M, Kudo Y, Yamada S, et al. Isolation and characterization of a novel chondroitin sulfate from squid liver integument rich in N-acetylgalactosamine(4,6-disulfate) and glucuronate(3-sulfate) residues. Carbohydr Res 2009; 344:1526 - 1532
  • Karamanos NK, Aletras AJ, Antonopoulos CA, Tsegenidis T, Tsiganos CP, Vynios DH. Extraction and fractionation of proteoglycans from squid skin. Biochim Biophys Acta 1988; 966:36 - 43
  • Karamanos KK, Aletras AJ, Antonopoulos CA, Hjerpe A, Tsiganos CP. Chondroitin proteoglycans from squid skin. Isolation, characterization and immunological studies. Eur J Biochem 1990; 192:33 - 38
  • Vynios DH, Tsiganos CP. Squid proteoglycans: isolation and characterization of three populations from cranial cartilage. Biochim Biophys Acta 1990; 1033:139 - 147
  • Karamanos NK, Manouras A, Tsegenidis T, Antonopoulos CA. Isolation and chemical study of the glycosaminoglycans from squid cornea. Int J Biochem 1991; 23:67 - 72
  • Tamura J, Arima K, Imazu A, Tsutsumishita N, Fujita H, Yamane M, et al. Sulfation patterns and the amounts of chondroitin sulfate in the diamond squid, Thysanoteuthis rhombus. Biosci Biotechnol Biochem 2009; 73:1387 - 1391
  • Dietrich CP, Nader HB, de Paiva JF, Santos EA, Holme KR, Perlin AS. Heparin in molluscs: chemical, enzymatic degradation and 13C and 1H NMR spectroscopical evidence for the maintenance of the structure through evolution. Int J Biol Macromol 1989; 11:361 - 366
  • Ferreira TM, Medeiros MG, Dietrich CP, Nader HB. Structure of heparan sulfate from the fresh water mollusc Anomantidae sp: sequencing of its disaccharide units. Int J Biochem 1993; 25:1219 - 1225
  • Kim YS, Ahn MY, Wu SJ, Kim DH, Toida T, Teesch LM, et al. Determination of the structure of oligosaccharides prepared from acharan sulfate. Glycobiology 1998; 8:869 - 877
  • Luppi E, Cesaretti M, Volpi N. Purification and characterization of heparin from the Italian clam Callista chione. Biomacromolecules 2005; 6:1672 - 1678
  • Volpi N, Maccari F. Glycosaminoglycan composition of the large freshwater mollusc bivalve Anodonta anodonta. Biomacromolecules 2005; 6:3174 - 3180
  • Pejler G, Danielsson A, Björk I, Lindahl U, Nader HB, Dietrich CP. Structure and antithrombin-binding properties of heparin isolated from the clams Anomalocardia brasiliana and Tivela mactroides. J Biol Chem 1987; 262:11413 - 11421
  • Chi L, Munoz EM, Choi HS, Ha YW, Kim YS, Toida T, et al. Preparation and structural determination of large oligosaccharides derived from acharan sulfate. Carbohydr Res 2006; 341:864 - 869
  • Gomes AM, Kozlowski EO, Pomin VH, de Barros CM, Zaganeli JL, Pavão MS. Unique extracellular matrix heparan sulfate from the bivalve Nodipecten nodosus (Linnaeus 1758) safely inhibits arterial thrombosis after photochemically induced endothelial lesion. J Biol Chem 2010; 285:7312 - 7323
  • Volpi N, Maccari F. Structural characterization and antithrombin activity of dermatan sulfate purified from marine clam Scapharca inaequivalvis. Glycobiology 2009; 19:356 - 367
  • Volpi N, Maccari F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie 2003; 85:619 - 625
  • Wessels MR, Moses AE, Goldberg JB, DiCesare TJ. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci USA 1991; 88:8317 - 8321
  • Seno N, Murakami K. Structure of disulfated disaccharides from chondroitin polysulfates, chondroitin sulfate D and K. Carbohydr Res 1982; 103:190 - 194
  • Sugahara K, Tanaka Y, Yamada S, Seno N, Kitagawa H, Haslam SM, et al. Novel sulfated oligosaccharides containing 3-O-sulfated glucuronic acid from king crab cartilage chondroitin sulfate K. Unexpected degradation by chondroitinase ABC. J Biol Chem 1996; 271:26745 - 26754
  • Kitagawa H, Tanaka Y, Yamada S, Seno N, Haslam SM, Morris HR, et al. A novel pentasaccharide sequence GlcA(3-sulfate)(beta1-3)GalNAc(4-sulfate)(beta1-4) (Fucalpha1-3)GlcA(beta1-3)GalNAc(4-sulfate) in the oligosaccharides isolated from king crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry 1997; 36:3998 - 4008
  • Vieira RP, Mourão PA. Occurrence of a unique fucosebranched chondroitin sulfate in the body wall of a sea cucumber. J Biol Chem 1988; 263:18176 - 18183
  • Fongmoon D, Shetty AK, Basappa, Yamad S, Sugiura M, Kongtawelert P, et al. Chondroitinase-mediated degradation of rare 3-O-sulfated glucuronic acid in functional oversulfated chondroitin sulfate K and E. J Biol Chem 2007; 282:36895 - 36904
  • Dietrich CP, Paiva JF, Castro RA, Chavante SF, Jeske W, Fareed J, et al. Structural features and anticoagulant activities of a novel natural low molecular weight heparin from the shrimp Penaeus brasiliensis. Biochim Biophys Acta 1999; 1428:273 - 283
  • Nader HB, Medeiros MGL, Paiva JF, Paiva VMP, Jerônimo SMB, Ferreira TMPC, et al. A correlation between the sulfated glycosaminoglycan concentration and degree of salinity of the “habitat” in fifteen species of the classes Crustacea, Pelecypoda and Gastropoda. Comp Biochem Physiol 1983; 76:433 - 436
  • Toyoda H, Kinoshita-Toyoda A, Fox B, Selleck SB. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem 2000; 275:21856 - 21861
  • Sinnis P, Coppi A, Toida T, Toyoda H, Kinoshita-Toyoda A, Xie J, et al. Mosquito heparan sulfate and its potential role in malaria infection and transmission. J Biol Chem 2007; 282:25376 - 25384
  • Sugahara K, Yamada S. Structure and function of oversulfated chondroitin sulfate variants: unique sulfation patterns and neuroregulatory activities. Trends Glycosci. Glycotechnol 2000; 12:321 - 349
  • Nader HB, Dietrich CP. Lane DA, Lindahl U. Natural occurrence and possible biological role of heparin. Heparin 1989; London Edward Arnold 81 - 96
  • Karamanos NK, Manouras A, Tsegenidis T, Antonopoulos CA. Isolation and chemical study of the glycosaminoglycans from squid cornea. Int J Biochem 1991; 23:67 - 72
  • Lee KB, Kim JS, Kwak ST, Sim W, Kwak JH, Kim YS. Isolation and identification of chondroitin sulfates from the mud snail. Arch Pharm Res 1998; 21:555 - 558
  • Volpi N, Mucci A. Characterization of a low-sulfated chondroitin sulfate from the body of Viviparus ater (mollusca gastropoda). Modification of its structure by lead pollution. Glycoconj J 1998; 15:1071 - 1078
  • Cesaretti M, Luppi E, Maccari F, Volpi N. Isolation and characterization of a heparin with high anticoagulant activity from the clam Tapes phylippinarum: evidence for the presence of a high content of antithrombin III binding site. Glycobiology 2004; 14:1275 - 1284