777
Views
18
CrossRef citations to date
0
Altmetric
Mini Review

Chromodomains and LTR retrotransposons in plants

Pages 158-162 | Received 19 Dec 2008, Accepted 23 Dec 2008, Published online: 30 Apr 2009

References

  • Koonin EV, Zhou S, Lucchesi JC. The chromo superfamily: new members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res 1995; 23:4229 - 4233
  • Aasland R, Stewart AF. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 1995; 23:3168 - 3174
  • Paro R, Hogness DS. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 1991; 88:263 - 267
  • Jacobs SA, Khorasanizadeh S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 2002; 295:2080 - 2083
  • Chen CC, Hwang JK, Yang JM. (PS)2: protein structure prediction server. Nucleic Acids Res 2006; 34:152 - 157
  • Ball LJ, Murzina NV, Broadhurst RW, Raine AR, Archer SJ, Stott FJ, et al. Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J 1997; 16:2473 - 2481
  • Brehm A, Tufteland KR, Aasland R, Becker PB. The many colours of chromodomains. Bioessays 2004; 26:133 - 140
  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410:116 - 120
  • Akhtar A, Zink D, Becker PB. Chromodomains are protein-RNA interaction modules. Nature 2000; 407:405 - 409
  • Bouazoune K, Mitterweger A, Längst G, Imhof A, Akhtar A, Becker PB, et al. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO J 2002; 21:2430 - 2440
  • Tajul-Arifin K, Teasdale R, Ravasi T, Humel DA, Mattick JS. Identification and analysis of chromodomain-containing proteins encoded in the mouse transcriptome. Genome Res 2003; 13:1416 - 1429
  • Elgin SC. Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 1996; 6:193 - 202
  • Grewal SI, Elgin SC. Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 2002; 12:178 - 187
  • Platero JS, Hartnett T, Eissenberg JC. Functional analysis of the chromo domain of HP1. EMBO J 1995; 14:3977 - 3986
  • Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 2001; 20:5232 - 5241
  • Smothers JF, Henikoff S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol 2000; 10:27 - 30
  • Brasher SV, Smith BO, Fogh RH, Nietlispach D, Thiru A, Nielsen PR, et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 2000; 19:1587 - 1597
  • Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, et al. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 2004; 23:489 - 499
  • Eissenberg JC. Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 2001; 275:19 - 29
  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 2003; 17:1870 - 1881
  • Min J, Zhang Y, Xu RM. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 2003; 17:1823 - 1828
  • Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 2005; 438:1181 - 1185
  • Akhtar A, Becker PB. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 2000; 5:367 - 375
  • Lucchesi JC. Dosage compensation in Drosophila and the ‘complex’ world of transcriptional regulation. Bioessays 1996; 18:541 - 547
  • Malik HS, Eickbush TH. Modular evolution of the integrase domain in the Ty3/gypsy class of LTR retrotransposons. J of Virol 1999; 73:5186 - 5190
  • Marín I, Lloréns C. Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 2000; 17:1040 - 1049
  • Gorinsek B, Gubensek F, Kordis D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 2004; 21:781 - 798
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860 - 921
  • Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z. Grass genomes. Proc Natl Acad Sci USA 1998; 95:1975 - 1978
  • Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 2005; 110:91 - 107
  • Kidwell MG, Lisch DR. Perspective: transposable elements, parasitic DNA and genome evolution. Evolution 2001; 55:1 - 24
  • Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL. Two retrotransposons maintain telomeres in Drosophila. Chromosome Res 2005; 13:443 - 453
  • Kapitonov VV, Jurka J. Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 2007; 23:521 - 529
  • Pritham EJ, Putliwala T, Feschotte C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 2007; 390:3 - 17
  • Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 2007; 41:331 - 368
  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007; 8:973 - 982
  • Goodwin TJ, Poulter RT. The DIRS1 group of retrotransposons. Mol Biol Evol 2001; 18:2067 - 2082
  • Peterson-Burch BD, Voytas DF. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol 2002; 19:1832 - 1845
  • Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons. Genome Biol 2004; 5:225
  • Bowman JL, Floyd SK, Sakakibara K. Green genes-comparative genomics of the green branch of life. Cell 2007; 129:229 - 234
  • Hedges SB. The origin and evolution of model organisms. Nat Rev Genet 2002; 3:838 - 849
  • Novikova O, Mayorov V, Smyshlyaev G, Fursov M, Adkison L, Pisarenko O, et al. Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). Plant J 2008; 56:562 - 574
  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 2008; 18:359 - 369
  • Wright DA, Voytas DF. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 1998; 149:703 - 715
  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 2001; 26:307 - 316
  • Hirochika H, Fukuchi A, Kikuchi F. Retrotransposon families in rice. Mol Gen Genet 1992; 233:209 - 216
  • Kumekawa N, Ohtsubo E, Ohtsubo H. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet Syst 1999; 74:299 - 307
  • Hizi A, Levin HL. The integrase of the long terminal repeat-retrotransposon tf1 has a chromodomain that modulates integrase activities. J Biol Chem 2005; 280:39086 - 39094
  • Nakayashiki H, Awa T, Tosa Y, Mayama S. The C-terminal chromodomain-like module in the integrase domain is crucial for high transposition efficiency of the retrotransposon MAGGY. FEBS Lett 2005; 579:488 - 492
  • Sandmeyer S. Targeting transposition: at home in the genome. Genome Res 1998; 8:416 - 418
  • Boeke JD, Devine SE. Yeast retrotransposons: finding a nice quiet neighborhood. Cell 1998; 93:1087 - 1089
  • Cove DJ, Kammerer W, Knight CD, Leech MJ, Martin CR, Wang TL. Developmental genetic studies of the moss, Physcomitrella patens. Symp Soc Exp Biol 1997; 45:31 - 43
  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008; 319:64 - 69