956
Views
53
CrossRef citations to date
0
Altmetric
Review

Searching for gold beyond mitosis

Mining intracellular membrane traffic in Aspergillus nidulans

, , , , , & show all
Pages 2-14 | Published online: 01 Jan 2012

References

  • Morris NR, Enos AP. Mitotic gold in a mold: Aspergillus genetics and the biology of mitosis. Trends Genet 1992; 8:32 - 3; http://dx.doi.org/10.1016/0168-9525(92)90022-V; PMID: 1369734
  • Osmani SA, Mirabito PM. The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans. Fungal Genet Biol 2004; 41:401 - 10; http://dx.doi.org/10.1016/j.fgb.2003.11.009; PMID: 14998523
  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ. The genetics of Aspergillus nidulans. Adv Genet 1953; 5:141 - 238; http://dx.doi.org/10.1016/S0065-2660(08)60408-3; PMID: 13040135
  • Cohen BL. Guido Pontecorvo (“Ponte”): a centenary memoir. Genetics 2007; 177:1439 - 44; PMID: 18039877
  • Wilson RA, Arst HN Jr.. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol Mol Biol Rev 1998; 62:586 - 96; PMID: 9729601
  • Todd RB, Davis MA, Hynes MJ. Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat Protoc 2007; 2:822 - 30; http://dx.doi.org/10.1038/nprot.2007.113; PMID: 17446882
  • Todd RB, Davis MA, Hynes MJ. Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc 2007; 2:811 - 21; http://dx.doi.org/10.1038/nprot.2007.112; PMID: 17446881
  • Morris NR. Mitotic mutants of Aspergillus nidulans. Genet Res 1975; 26:237 - 54; http://dx.doi.org/10.1017/S0016672300016049; PMID: 773766
  • Enos AP, Morris NR. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 1990; 60:1019 - 27; http://dx.doi.org/10.1016/0092-8674(90)90350-N; PMID: 2138511
  • Osmani SA, Engle DB, Doonan JH, Morris NR. Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 1988; 52:241 - 51; http://dx.doi.org/10.1016/0092-8674(88)90513-2; PMID: 3277718
  • Osmani SA, Pu RT, Morris NR. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 1988; 53:237 - 44; http://dx.doi.org/10.1016/0092-8674(88)90385-6; PMID: 3359487
  • O’Connell MJ, Krien MJ, Hunter T. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 2003; 13:221 - 8; http://dx.doi.org/10.1016/S0962-8924(03)00056-4; PMID: 12742165
  • Doonan JH, Morris NR. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell 1989; 57:987 - 96; http://dx.doi.org/10.1016/0092-8674(89)90337-1; PMID: 2544297
  • Etxebeste O, Garzi´a A, Espeso EA, Ugalde U. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 2010; 18:569 - 76; http://dx.doi.org/10.1016/j.tim.2010.09.007; PMID: 21035346
  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 2004; 20:559 - 91; http://dx.doi.org/10.1146/annurev.cellbio.20.010403.103108; PMID: 15473852
  • Riquelme M, Fischer R, Bartnicki-Garci´a S. Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 2003; 222:211 - 5; http://dx.doi.org/10.1007/s00709-003-0020-8; PMID: 14714210
  • Momany M. Polarity in filamentous fungi: establishment, maintenance and new axes. Curr Opin Microbiol 2002; 5:580 - 5; http://dx.doi.org/10.1016/S1369-5274(02)00368-5; PMID: 12457701
  • Fiddy C, Trinci AP. Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol 1976; 97:169 - 84; PMID: 796408
  • Fischer R. Nuclear movement in filamentous fungi. FEMS Microbiol Rev 1999; 23:39 - 68; http://dx.doi.org/10.1111/j.1574-6976.1999.tb00391.x; PMID: 10077853
  • Morris NR, Lai MH, Oakley CE. Identification of a gene for α-tubulin in Aspergillus nidulans. Cell 1979; 16:437 - 42; http://dx.doi.org/10.1016/0092-8674(79)90019-9; PMID: 378391
  • Sheir-Neiss G, Lai MH, Morris NR. Identification of a gene for β-tubulin in Aspergillus nidulans. Cell 1978; 15:639 - 47; http://dx.doi.org/10.1016/0092-8674(78)90032-6; PMID: 363278
  • Oakley CE, Oakley BR. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 1989; 338:662 - 4; http://dx.doi.org/10.1038/338662a0; PMID: 2649796
  • Oakley BR, Morris NR. Nuclear movement is β--tubulin-dependent in Aspergillus nidulans. Cell 1980; 19:255 - 62; http://dx.doi.org/10.1016/0092-8674(80)90407-9; PMID: 6986988
  • Xiang X, Beckwith SM, Morris NR. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci U S A 1994; 91:2100 - 4; http://dx.doi.org/10.1073/pnas.91.6.2100; PMID: 8134356
  • Xiang X, Osmani AH, Osmani SA, Xin M, Morris NR. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 1995; 6:297 - 310; PMID: 7612965
  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, et al. Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 2005; 4:225 - 9; http://dx.doi.org/10.1128/EC.4.2.225-229.2005; PMID: 15701784
  • Hohmann-Marriott MF, Uchida M, van de Meene AM, Garret M, Hjelm BE, Kokoori S, et al. Application of electron tomography to fungal ultrastructure studies. New Phytol 2006; 172:208 - 20; http://dx.doi.org/10.1111/j.1469-8137.2006.01868.x; PMID: 16995909
  • Sharpless KE, Harris SD. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 2002; 13:469 - 79; http://dx.doi.org/10.1091/mbc.01-07-0356; PMID: 11854405
  • Taheri-Talesh N, Horio T, Araujo-Baz´n L, Dou X, Espeso EA, Peñalva MA, et al. The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 2008; 19:1439 - 49; http://dx.doi.org/10.1091/mbc.E07-05-0464; PMID: 18216285
  • Abenza JF, Pantazopoulou A, Rodri´guez JM, Galindo A, Peñalva MA. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 2009; 10:57 - 75; http://dx.doi.org/10.1111/j.1600-0854.2008.00848.x; PMID: 19000168
  • Hayakawa Y, Ishikawa E, Shoji JY, Nakano H, Kitamoto K. Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Mol Microbiol 2011; 81:40 - 55; http://dx.doi.org/10.1111/j.1365-2958.2011.07700.x; PMID: 21564341
  • Horio T, Oakley BR. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 2005; 16:918 - 26; http://dx.doi.org/10.1091/mbc.E04-09-0798; PMID: 15548594
  • Torralba S, Raudaskoski M, Pedregosa AM, Laborda F. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 1998; 144:45 - 53; http://dx.doi.org/10.1099/00221287-144-1-45; PMID: 9537763
  • Pantazopoulou A, Peñalva MA. Organization and dynamics of the Aspergillus nidulans Golgi during apical extension and mitosis. Mol Biol Cell 2009; 20:4335 - 47; http://dx.doi.org/10.1091/mbc.E09-03-0254; PMID: 19692566
  • Pearson CL, Xu K, Sharpless KE, Harris SD. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol Biol Cell 2004; 15:3658 - 72; http://dx.doi.org/10.1091/mbc.E03-11-0803; PMID: 15155805
  • Zhang JT, Tan K, Wu X, Chen G, Sun J, Reck-Peterson SL, et al. Aspergillus Myosin-v supports polarized growth in the absence of microtubule-based transport. PLoS One 2011; 6:e28575; http://dx.doi.org/10.1371/journal.pone.0028575; PMID: 22194856
  • Breakspear A, Langford KJ, Momany M, Assinder SJ. CopA:GFP localizes to putative Golgi equivalents in Aspergillus nidulans. FEMS Microbiol Lett 2007; 277:90 - 7; http://dx.doi.org/10.1111/j.1574-6968.2007.00945.x; PMID: 17986089
  • Howard RJ. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 1981; 48:89 - 103; PMID: 7196918
  • Momany M, Richardson EA, Van Sickle C, Jedd G. Mapping Woronin body position in Aspergillus nidulans. Mycologia 2002; 94:260 - 6; http://dx.doi.org/10.2307/3761802; PMID: 21156495
  • Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 1999; 3:275 - 85; http://dx.doi.org/10.1016/S1097-2765(00)80455-4; PMID: 10198630
  • Levine TP, Munro S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 2002; 12:695 - 704; http://dx.doi.org/10.1016/S0960-9822(02)00779-0; PMID: 12007412
  • Wooding S, Pelham HR. The dynamics of golgi protein traffic visualized in living yeast cells. Mol Biol Cell 1998; 9:2667 - 80; PMID: 9725919
  • Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS. Golgi maturation visualized in living yeast. Nature 2006; 441:1002 - 6; http://dx.doi.org/10.1038/nature04717; PMID: 16699524
  • Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A. Live imaging of yeast Golgi cisternal maturation. Nature 2006; 441:1007 - 10; http://dx.doi.org/10.1038/nature04737; PMID: 16699523
  • Glick BS, Nakano A. Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 2009; 25:113 - 32; http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175421; PMID: 19575639
  • Jackson CL. Mechanisms of transport through the Golgi complex. J Cell Sci 2009; 122:443 - 52; http://dx.doi.org/10.1242/jcs.032581; PMID: 19193869
  • Luini A. A brief history of the cisternal progression-maturation model. Cell Logist 2011; 1:6 - 11; http://dx.doi.org/10.4161/cl.1.1.14693; PMID: 21686099
  • Pantazopoulou A, Peñalva MA. Characterization of Aspergillus nidulans RabC/Rab6. Traffic 2011; 12:386 - 406; http://dx.doi.org/10.1111/j.1600-0854.2011.01164.x; PMID: 21226815
  • Graham TR, Scott PA, Emr SD. Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. EMBO J 1993; 12:869 - 77; PMID: 8458343
  • Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 1997; 139:1137 - 55; http://dx.doi.org/10.1083/jcb.139.5.1137; PMID: 9382862
  • Jackson-Hayes L, Hill TW, Loprete DM, Fay LM, Gordon BS, Nkashama SA, et al. Two GDP-mannose transporters contribute to hyphal form and cell wall integrity in Aspergillus nidulans. Microbiology 2008; 154:2037 - 47; http://dx.doi.org/10.1099/mic.0.2008/017483-0; PMID: 18599832
  • Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, et al. COPI acts in both vesicular and tubular transport. Nat Cell Biol 2011; 13:996 - 1003; http://dx.doi.org/10.1038/ncb2273; PMID: 21725317
  • Emr S, Glick BS, Linstedt AD, Lippincott-Schwartz J, Luini A, Malhotra V, et al. Journeys through the Golgi--taking stock in a new era. J Cell Biol 2009; 187:449 - 53; http://dx.doi.org/10.1083/jcb.200909011; PMID: 19948493
  • Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 2003; 14:2277 - 91; http://dx.doi.org/10.1091/mbc.E02-10-0697; PMID: 12808029
  • Bevis BJ, Hammond AT, Reinke CA, Glick BS. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat Cell Biol 2002; 4:750 - 6; http://dx.doi.org/10.1038/ncb852; PMID: 12360285
  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 1999; 145:69 - 81; http://dx.doi.org/10.1083/jcb.145.1.69; PMID: 10189369
  • Siniossoglou S, Pelham HR. An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J 2001; 20:5991 - 8; http://dx.doi.org/10.1093/emboj/20.21.5991; PMID: 11689439
  • Siniossoglou S, Peak-Chew SY, Pelham HR. Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J 2000; 19:4885 - 94; http://dx.doi.org/10.1093/emboj/19.18.4885; PMID: 10990452
  • Sengupta D, Linstedt AD. Control of organelle size: the Golgi complex. Annu Rev Cell Dev Biol 2011; 27:57 - 77; http://dx.doi.org/10.1146/annurev-cellbio-100109-104003; PMID: 21639798
  • Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, Ohtsuka T, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 2007; 13:305 - 14; http://dx.doi.org/10.1016/j.devcel.2007.06.010; PMID: 17681140
  • Araujo-Baz´n L, Peñalva MA, Espeso EA. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 2008; 67:891 - 905; http://dx.doi.org/10.1111/j.1365-2958.2007.06102.x; PMID: 18179595
  • Upadhyay S, Shaw BD. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 2008; 68:690 - 705; http://dx.doi.org/10.1111/j.1365-2958.2008.06178.x; PMID: 18331474
  • Lee SC, Schmidtke SN, Dangott LJ, Shaw BD. Aspergillus nidulans ArfB plays a role in endocytosis and polarized growth. Eukaryot Cell 2008; 7:1278 - 88; http://dx.doi.org/10.1128/EC.00039-08; PMID: 18539885
  • Kaksonen M, Sun Y, Drubin DG. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 2003; 115:475 - 87; http://dx.doi.org/10.1016/S0092-8674(03)00883-3; PMID: 14622601
  • Herv´s-Aguilar A, Peñalva MA. Endocytic machinery protein SlaB is dispensable for polarity establishment but necessary for polarity maintenance in hyphal tip cells of Aspergillus nidulans. Eukaryot Cell 2010; 9:1504 - 18; http://dx.doi.org/10.1128/EC.00119-10; PMID: 20693304
  • Valdez-Taubas J, Pelham HR. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 2003; 13:1636 - 40; http://dx.doi.org/10.1016/j.cub.2003.09.001; PMID: 13678596
  • Virag A, Lee MP, Si H, Harris SD. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 2007; 66:1579 - 96; PMID: 18005099
  • Schuster M, Lipowsky R, Assmann MA, Lenz P, Steinberg G. Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc Natl Acad Sci U S A 2011; 108:3618 - 23; http://dx.doi.org/10.1073/pnas.1015839108; PMID: 21317367
  • Lenz JH, Schuchardt I, Straube A, Steinberg G. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 2006; 25:2275 - 86; http://dx.doi.org/10.1038/sj.emboj.7601119; PMID: 16688221
  • Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G. A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 2002; 21:2946 - 57; http://dx.doi.org/10.1093/emboj/cdf296; PMID: 12065408
  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2:107 - 17; http://dx.doi.org/10.1038/35052055; PMID: 11252952
  • Segev N. Coordination of intracellular transport steps by GTPases. Semin Cell Dev Biol 2011; 22:33 - 8; http://dx.doi.org/10.1016/j.semcdb.2010.11.005; PMID: 21130177
  • Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5:886 - 96; http://dx.doi.org/10.1038/nrm1500; PMID: 15520808
  • Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Ri´os V, Peñalva MA. Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 2010; 21:2756 - 69; http://dx.doi.org/10.1091/mbc.E10-02-0119; PMID: 20534811
  • Zekert N, Fischer R. The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol Biol Cell 2009; 20:673 - 84; http://dx.doi.org/10.1091/mbc.E08-07-0685; PMID: 19037104
  • Zhang J, Yao X, Fischer L, Abenza JF, Peñalva MA, Xiang X. The p25 subunit of the dynactin complex is required for dynein-early endosome interaction. J Cell Biol 2011; 193:1245 - 55; http://dx.doi.org/10.1083/jcb.201011022; PMID: 21708978
  • Zhang J, Zhuang L, Lee Y, Abenza JF, Peñalva MA, Xiang X. The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci 2010; 123:3596 - 604; http://dx.doi.org/10.1242/jcs.075259; PMID: 20876661
  • Konzack S, Rischitor PE, Enke C, Fischer R. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 2005; 16:497 - 506; http://dx.doi.org/10.1091/mbc.E04-02-0083; PMID: 15563609
  • Zhang J, Li S, Fischer R, Xiang X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 2003; 14:1479 - 88; http://dx.doi.org/10.1091/mbc.E02-08-0516; PMID: 12686603
  • Kardon JR, Vale RD. Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 2009; 10:854 - 65; http://dx.doi.org/10.1038/nrm2804; PMID: 19935668
  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122:735 - 49; http://dx.doi.org/10.1016/j.cell.2005.06.043; PMID: 16143105
  • Markgraf DF, Ahnert F, Arlt H, Mari M, Peplowska K, Epp N, et al. The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments. Mol Biol Cell 2009; 20:5276 - 89; http://dx.doi.org/10.1091/mbc.E09-06-0521; PMID: 19828734
  • Peplowska K, Markgraf DF, Ostrowicz CW, Bange G, Ungermann C. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 2007; 12:739 - 50; http://dx.doi.org/10.1016/j.devcel.2007.03.006; PMID: 17488625
  • Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell 2010; 141:497 - 508; http://dx.doi.org/10.1016/j.cell.2010.03.011; PMID: 20434987
  • Nordmann M, Cabrera M, Perz A, Bröcker C, Ostrowicz C, Engelbrecht-Vandre´ S, et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 2010; 20:1654 - 9; http://dx.doi.org/10.1016/j.cub.2010.08.002; PMID: 20797862
  • Seals DF, Eitzen G, Margolis N, Wickner WT, Price AA. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci U S A 2000; 97:9402 - 7; http://dx.doi.org/10.1073/pnas.97.17.9402; PMID: 10944212
  • Peñalva MA. Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol 2005; 42:963 - 75; http://dx.doi.org/10.1016/j.fgb.2005.09.004; PMID: 16291501
  • Herv´s-Aguilar A, Rodri´guez-Galán O, Galindo A, Abenza JF, Arst HN Jr., Peñalva MA. Characterization of Aspergillus nidulans DidB Did2, a non-essential component of the multivesicular body pathway. Fungal Genet Biol 2010; 47:636 - 46; http://dx.doi.org/10.1016/j.fgb.2010.03.010; PMID: 20362686
  • Galindo A, Herv´s-Aguilar A, Rodri´guez-Galán O, Vincent O, Arst HN Jr., Tilburn J, et al. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 2007; 8:1346 - 64; http://dx.doi.org/10.1111/j.1600-0854.2007.00620.x; PMID: 17696968
  • Calcagno-Pizarelli AM, Herv´s-Aguilar A, Galindo A, Abenza JF, Peñalva MA, Arst HN Jr. Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. J Cell Sci 2011; 124:4064 - 76; http://dx.doi.org/10.1242/jcs.088344; PMID: 22135362
  • Findon H, Calcagno-Pizarelli AM, Marti´nez JL, Spielvogel A, Markina-Iñarrairaegui A, Indrakumar T, et al. Analysis of a novel calcium auxotrophy in Aspergillus nidulans. Fungal Genet Biol 2010; 47:647 - 55; http://dx.doi.org/10.1016/j.fgb.2010.04.002; PMID: 20438880
  • Spielvogel A, Findon H, Arst HN Jr., Araújo-Baz´n L, Hern´ndez-Orti´z P, Stahl U, et al. Two zinc finger transcription factors, CrzA and SltA, are involved in cation homoeostasis and detoxification in Aspergillus nidulans. Biochem J 2008; 414:419 - 29; http://dx.doi.org/10.1042/BJ20080344; PMID: 18471095
  • Hay JC. Calcium: a fundamental regulator of intracellular membrane fusion?. EMBO Rep 2007; 8:236 - 40; http://dx.doi.org/10.1038/sj.embor.7400921; PMID: 17330068
  • Fern´ndez-Cañón JM, Granadino B, Beltrán-Valero de Bernabe´ D, Renedo M, Fern´ndez-Ruiz E, Peñalva MA, et al. The molecular basis of alkaptonuria. Nat Genet 1996; 14:19 - 24; http://dx.doi.org/10.1038/ng0996-19; PMID: 8782815
  • Gallardo ME, Desviat LR, Rodri´guez JM, Esparza-Gordillo J, Pe´rez-Cerdá C, Pe´rez B, et al. The molecular basis of 3-methylcrotonylglycinuria, a disorder of leucine catabolism. Am J Hum Genet 2001; 68:334 - 46; http://dx.doi.org/10.1086/318202; PMID: 11170888
  • Peñalva MA. A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet Biol 2001; 34:1 - 10; http://dx.doi.org/10.1006/fgbi.2001.1284; PMID: 11567547
  • Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 1998; 62:35 - 54; PMID: 9529886