1,005
Views
26
CrossRef citations to date
0
Altmetric
Review

The role of non-canonical SNAREs in synaptic vesicle recycling

&
Pages 20-27 | Published online: 01 Jan 2012

References

  • Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004; 27:509 - 47; http://dx.doi.org/10.1146/annurev.neuro.26.041002.131412; PMID: 15217342
  • Schoch S, De´k F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001; 294:1117 - 22; http://dx.doi.org/10.1126/science.1064335; PMID: 11691998
  • Bronk P, De´k F, Wilson MC, Liu X, Südhof TC, Kavalali ET. Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. J Neurophysiol 2007; 98:794 - 806; http://dx.doi.org/10.1152/jn.00226.2007; PMID: 17553942
  • Sørensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, et al. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 2003; 114:75 - 86; http://dx.doi.org/10.1016/S0092-8674(03)00477-X; PMID: 12859899
  • Tafoya LC, Mameli M, Miyashita T, Guzowski JF, Valenzuela CF, Wilson MC. Expression and function of SNAP-25 as a universal SNARE component in GABAergic neurons. J Neurosci 2006; 26:7826 - 38; http://dx.doi.org/10.1523/JNEUROSCI.1866-06.2006; PMID: 16870728
  • Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Benditó G, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002; 5:19 - 26; PMID: 11753414
  • Broadie K, Prokop A, Bellen HJ, O’Kane CJ, Schulze KL, Sweeney ST. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 1995; 15:663 - 73; http://dx.doi.org/10.1016/0896-6273(95)90154-X; PMID: 7546745
  • Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y, Schwarz TL. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 1998; 18:2028 - 39; PMID: 9482790
  • De´k F, Schoch S, Liu X, Südhof TC, Kavalali ET. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat Cell Biol 2004; 6:1102 - 8; http://dx.doi.org/10.1038/ncb1185; PMID: 15475946
  • De´k F, Liu X, Khvotchev M, Li G, Kavalali ET, Sugita S, et al. Alpha-latrotoxin stimulates a novel pathway of Ca2+-dependent synaptic exocytosis independent of the classical synaptic fusion machinery. J Neurosci 2009; 29:8639 - 48; http://dx.doi.org/10.1523/JNEUROSCI.0898-09.2009; PMID: 19587270
  • Burre´ J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, et al. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 2006; 6:6250 - 62; http://dx.doi.org/10.1002/pmic.200600357; PMID: 17080482
  • Grønborg M, Pavlos NJ, Brunk I, Chua JJ, Münster-Wandowski A, Riedel D, et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 2010; 30:2 - 12; http://dx.doi.org/10.1523/JNEUROSCI.4074-09.2010; PMID: 20053882
  • Morciano M, Burre´ J, Corvey C, Karas M, Zimmermann H, Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 2005; 95:1732 - 45; http://dx.doi.org/10.1111/j.1471-4159.2005.03506.x; PMID: 16269012
  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, et al. Molecular anatomy of a trafficking organelle. Cell 2006; 127:831 - 46; http://dx.doi.org/10.1016/j.cell.2006.10.030; PMID: 17110340
  • Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci U S A 2004; 101:3833 - 8; http://dx.doi.org/10.1073/pnas.0308186101; PMID: 15007177
  • Burre´ J, Volknandt W. The synaptic vesicle proteome. J Neurochem 2007; 101:1448 - 62; http://dx.doi.org/10.1111/j.1471-4159.2007.04453.x; PMID: 17355250
  • Mutch SA, Kensel-Hammes P, Gadd JC, Fujimoto BS, Allen RW, Schiro PG, et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci 2011; 31:1461 - 70; http://dx.doi.org/10.1523/JNEUROSCI.3805-10.2011; PMID: 21273430
  • Fredj NB, Burrone J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat Neurosci 2009; 12:751 - 8; http://dx.doi.org/10.1038/nn.2317; PMID: 19430474
  • Sara Y, Virmani T, De´k F, Liu X, Kavalali ET. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 2005; 45:563 - 73; http://dx.doi.org/10.1016/j.neuron.2004.12.056; PMID: 15721242
  • Virmani T, Ertunc M, Sara Y, Mozhayeva M, Kavalali ET. Phorbol esters target the activity-dependent recycling pool and spare spontaneous vesicle recycling. J Neurosci 2005; 25:10922 - 9; http://dx.doi.org/10.1523/JNEUROSCI.3766-05.2005; PMID: 16306405
  • Waters J, Smith SJ. Phorbol esters potentiate evoked and spontaneous release by different presynaptic mechanisms. J Neurosci 2000; 20:7863 - 70; PMID: 11050105
  • Chung C, Barylko B, Leitz J, Liu X, Kavalali ET. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci 2010; 30:1363 - 76; http://dx.doi.org/10.1523/JNEUROSCI.3427-09.2010; PMID: 20107062
  • Mathew SS, Pozzo-Miller L, Hablitz JJ. Kainate modulates presynaptic GABA release from two vesicle pools. J Neurosci 2008; 28:725 - 31; http://dx.doi.org/10.1523/JNEUROSCI.3625-07.2008; PMID: 18199771
  • Andreae LC, Fredj NB, Burrone J. Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci 2012; 32:1867 - 74; http://dx.doi.org/10.1523/JNEUROSCI.5181-11.2012; PMID: 22302825
  • Mozhayeva MG, Sara Y, Liu X, Kavalali ET. Development of vesicle pools during maturation of hippocampal synapses. J Neurosci 2002; 22:654 - 65; PMID: 11826095
  • De´k F, Shin OH, Kavalali ET, Südhof TC. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J Neurosci 2006; 26:6668 - 76; http://dx.doi.org/10.1523/JNEUROSCI.5272-05.2006; PMID: 16793874
  • Weber JP, Reim K, Sørensen JB. Opposing functions of two sub-domains of the SNARE-complex in neurotransmission. EMBO J 2010; 29:2477 - 90; http://dx.doi.org/10.1038/emboj.2010.130; PMID: 20562829
  • Groemer TW, Klingauf J. Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat Neurosci 2007; 10:145 - 7; http://dx.doi.org/10.1038/nn1831; PMID: 17220885
  • Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J. A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci 2010; 13:1451 - 3; http://dx.doi.org/10.1038/nn.2695; PMID: 21102448
  • Wilhelm BG, Groemer TW, Rizzoli SO. The same synaptic vesicles drive active and spontaneous release. Nat Neurosci 2010; 13:1454 - 6; http://dx.doi.org/10.1038/nn.2690; PMID: 21102450
  • Hua Z, Leal-Ortiz S, Foss SM, Waites CL, Garner CC, Voglmaier SM, et al. v-SNARE composition distinguishes synaptic vesicle pools. Neuron 2011; 71:474 - 87; http://dx.doi.org/10.1016/j.neuron.2011.06.010; PMID: 21835344
  • Ramirez DM, Khvotchev M, Trauterman B, Kavalali ET. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 2012; 73:121 - 34; http://dx.doi.org/10.1016/j.neuron.2011.10.034; PMID: 22243751
  • Raingo J, Khvotchev M, Liu P, Darios F, Li YC, Ramirez DM, et al. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 2012; In press http://dx.doi.org/10.1038/nn.3067; PMID: 22406549
  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998; 92:759 - 72; http://dx.doi.org/10.1016/S0092-8674(00)81404-X; PMID: 9529252
  • Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998; 395:347 - 53; http://dx.doi.org/10.1038/26412; PMID: 9759724
  • Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 1998; 95:15781 - 6; http://dx.doi.org/10.1073/pnas.95.26.15781; PMID: 9861047
  • Dietrich LE, Boeddinghaus C, LaGrassa TJ, Ungermann C. Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. Biochim Biophys Acta 2003; 1641:111 - 9; http://dx.doi.org/10.1016/S0167-4889(03)00094-6; PMID: 12914952
  • Filippini F, Rossi V, Galli T, Budillon A, D’Urso M, D’Esposito M. Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem Sci 2001; 26:407 - 9; http://dx.doi.org/10.1016/S0968-0004(01)01861-8; PMID: 11440841
  • Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D’Esposito M, et al. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci 2004; 29:682 - 8; http://dx.doi.org/10.1016/j.tibs.2004.10.002; PMID: 15544955
  • Muzerelle A, Alberts P, Martinez-Arca S, Jeannequin O, Lafaye P, Mazie´ JC, et al. Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience 2003; 122:59 - 75; http://dx.doi.org/10.1016/S0306-4522(03)00567-0; PMID: 14596849
  • Scheuber A, Rudge R, Danglot L, Raposo G, Binz T, Poncer JC, et al. Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 2006; 103:16562 - 7; http://dx.doi.org/10.1073/pnas.0603511103; PMID: 17056716
  • Hasan N, Corbin D, Hu C. Fusogenic pairings of vesicle-associated membrane proteins (VAMPs) and plasma membrane t-SNAREs--VAMP5 as the exception. PLoS One 2010; 5:e14238; http://dx.doi.org/10.1371/journal.pone.0014238; PMID: 21151919
  • Elferink LA, Trimble WS, Scheller RH. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J Biol Chem 1989; 264:11061 - 4; PMID: 2472388
  • Jacobsson G, Piehl F, Meister B. VAMP-1 and VAMP-2 gene expression in rat spinal motoneurones: differential regulation after neuronal injury. Eur J Neurosci 1998; 10:301 - 16; http://dx.doi.org/10.1046/j.1460-9568.1998.00050.x; PMID: 9753139
  • Bragina L, Giovedì S, Barbaresi P, Benfenati F, Conti F. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex: analysis of synaptogyrin, vesicle-associated membrane protein, and syntaxin. Neuroscience 2010; 165:934 - 43; http://dx.doi.org/10.1016/j.neuroscience.2009.11.009; PMID: 19909789
  • Liu Y, Sugiura Y, Lin W. The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol 2011; 589:1603 - 18; http://dx.doi.org/10.1113/jphysiol.2010.201939; PMID: 21282288
  • McMahon HT, Ushkaryov YA, Edelmann L, Link E, Binz T, Niemann H, et al. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 1993; 364:346 - 9; http://dx.doi.org/10.1038/364346a0; PMID: 8332193
  • Schubert V, Bouvier D, Volterra A. SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 2011; 59:1472 - 88; http://dx.doi.org/10.1002/glia.21190; PMID: 21656854
  • Pulido IR, Jahn R, Gerke V. VAMP3 is associated with endothelial weibel-palade bodies and participates in their Ca(2+)-dependent exocytosis. Biochim Biophys Acta 2011; 1813:1038 - 44; http://dx.doi.org/10.1016/j.bbamcr.2010.11.007; PMID: 21094665
  • Advani RJ, Bae HR, Bock JB, Chao DS, Doung YC, Prekeris R, et al. Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 1998; 273:10317 - 24; http://dx.doi.org/10.1074/jbc.273.17.10317; PMID: 9553086
  • Chaineau M, Danglot L, Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 2009; 583:3817 - 26; http://dx.doi.org/10.1016/j.febslet.2009.10.026; PMID: 19837067
  • Steegmaier M, Klumperman J, Foletti DL, Yoo JS, Scheller RH. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol Biol Cell 1999; 10:1957 - 72; PMID: 10359608
  • Alberts P, Rudge R, Hinners I, Muzerelle A, Martinez-Arca S, Irinopoulou T, et al. Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. Mol Biol Cell 2003; 14:4207 - 20; http://dx.doi.org/10.1091/mbc.E03-03-0147; PMID: 14517330
  • Alberts P, Rudge R, Irinopoulou T, Danglot L, Gauthier-Rouvière C, Galli T. Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane. Mol Biol Cell 2006; 17:1194 - 203; http://dx.doi.org/10.1091/mbc.E05-07-0643; PMID: 16381811
  • Martinez-Arca S, Alberts P, Zahraoui A, Louvard D, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 2000; 149:889 - 900; http://dx.doi.org/10.1083/jcb.149.4.889; PMID: 10811829
  • Cocucci E, Racchetti G, Rupnik M, Meldolesi J. The regulated exocytosis of enlargeosomes is mediated by a SNARE machinery that includes VAMP4. J Cell Sci 2008; 121:2983 - 91; http://dx.doi.org/10.1242/jcs.032029; PMID: 18713833
  • D’Alessandro R, Racchetti G, Meldolesi J. Outgrowth of neurites is a dual process. Commun Integr Biol 2010; 3:576 - 8; http://dx.doi.org/10.4161/cib.3.6.13093; PMID: 21331244
  • Flowerdew SE, Burgoyne RDA. A VAMP7/Vti1a SNARE complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels. Biochem J 2009; 418:529 - 40; http://dx.doi.org/10.1042/BJ20081736; PMID: 19138172
  • Kreykenbohm V, Wenzel D, Antonin W, Atlachkine V, von Mollard GF. The SNAREs vti1a and vti1b have distinct localization and SNARE complex partners. Eur J Cell Biol 2002; 81:273 - 80; http://dx.doi.org/10.1078/0171-9335-00247; PMID: 12067063
  • Laufman O, Hong W, Lev S. The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J Cell Biol 2011; 194:459 - 72; http://dx.doi.org/10.1083/jcb.201102045; PMID: 21807881
  • Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, Yue X, et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol 2002; 156:653 - 64; http://dx.doi.org/10.1083/jcb.200110081; PMID: 11839770
  • Brandhorst D, Zwilling D, Rizzoli SO, Lippert U, Lang T, Jahn R. Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc Natl Acad Sci U S A 2006; 103:2701 - 6; http://dx.doi.org/10.1073/pnas.0511138103; PMID: 16469845
  • Mancias JD, Goldberg J. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol Cell 2007; 26:403 - 14; http://dx.doi.org/10.1016/j.molcel.2007.03.017; PMID: 17499046
  • Tochio H, Tsui MM, Banfield DK, Zhang M. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 2001; 293:698 - 702; http://dx.doi.org/10.1126/science.1062950; PMID: 11474112
  • Pryor PR, Jackson L, Gray SR, Edeling MA, Thompson A, Sanderson CM, et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 2008; 134:817 - 27; http://dx.doi.org/10.1016/j.cell.2008.07.023; PMID: 18775314
  • MacDonald C, Munson M, Bryant NJ. Autoinhibition of SNARE complex assembly by a conformational switch represents a conserved feature of syntaxins. Biochem Soc Trans 2010; 38:209 - 12; http://dx.doi.org/10.1042/BST0380209; PMID: 20074061
  • Bock JB, Lin RC, Scheller RH. A new syntaxin family member implicated in targeting of intracellular transport vesicles. J Biol Chem 1996; 271:17961 - 5; http://dx.doi.org/10.1074/jbc.271.30.17961; PMID: 8663448
  • Tang BL, Low DY, Lee SS, Tan AE, Hong W. Molecular cloning and localization of human syntaxin 16, a member of the syntaxin family of SNARE proteins. Biochem Biophys Res Commun 1998; 242:673 - 9; http://dx.doi.org/10.1006/bbrc.1997.8029; PMID: 9464276
  • Tang BL, Tan AE, Lim LK, Lee SS, Low DY, Hong W. Syntaxin 12, a member of the syntaxin family localized to the endosome. J Biol Chem 1998; 273:6944 - 50; http://dx.doi.org/10.1074/jbc.273.12.6944; PMID: 9507000
  • Wang H, Frelin L, Pevsner J. Human syntaxin 7: a Pep12p/Vps6p homologue implicated in vesicle trafficking to lysosomes. Gene 1997; 199:39 - 48; http://dx.doi.org/10.1016/S0378-1119(97)00343-0; PMID: 9358037
  • Hoopmann P, Punge A, Barysch SV, Westphal V, Bückers J, Opazo F, et al. Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 2010; 107:19055 - 60; http://dx.doi.org/10.1073/pnas.1007037107; PMID: 20956291
  • Ravichandran V, Chawla A, Roche PA. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 1996; 271:13300 - 3; http://dx.doi.org/10.1074/jbc.271.23.13300; PMID: 8663154
  • Hohenstein AC, Roche PA. SNAP-29 is a promiscuous syntaxin-binding SNARE. Biochem Biophys Res Commun 2001; 285:167 - 71; http://dx.doi.org/10.1006/bbrc.2001.5141; PMID: 11444821
  • Chen D, Bernstein AM, Lemons PP, Whiteheart SW. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood 2000; 95:921 - 9; PMID: 10648404
  • Hepp R, Puri N, Hohenstein AC, Crawford GL, Whiteheart SW, Roche PA. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J Biol Chem 2005; 280:6610 - 20; http://dx.doi.org/10.1074/jbc.M412126200; PMID: 15611044
  • Rea S, Martin LB, McIntosh S, Macaulay SL, Ramsdale T, Baldini G, et al. Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J Biol Chem 1998; 273:18784 - 92; http://dx.doi.org/10.1074/jbc.273.30.18784; PMID: 9668052
  • Suh YH, Yoshimoto-Furusawa A, Weih KA, Tessarollo L, Roche KW, Mackem S, et al. Deletion of SNAP-23 results in pre-implantation embryonic lethality in mice. PLoS One 2011; 6:e18444; http://dx.doi.org/10.1371/journal.pone.0018444; PMID: 21479242
  • Bragina L, Candiracci C, Barbaresi P, Giovedì S, Benfenati F, Conti F. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex. Neuroscience 2007; 146:1829 - 40; http://dx.doi.org/10.1016/j.neuroscience.2007.02.060; PMID: 17445987
  • Chieregatti E, Chicka MC, Chapman ER, Baldini G. SNAP-23 functions in docking/fusion of granules at low Ca2+. Mol Biol Cell 2004; 15:1918 - 30; http://dx.doi.org/10.1091/mbc.E03-09-0684; PMID: 14742706
  • Delgado-Marti´nez I, Nehring RB, Sørensen JB. Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 2007; 27:9380 - 91; http://dx.doi.org/10.1523/JNEUROSCI.5092-06.2007; PMID: 17728451
  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 1994; 79:717 - 27; http://dx.doi.org/10.1016/0092-8674(94)90556-8; PMID: 7954835
  • Shin OH, Rizo J, Südhof TC. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat Neurosci 2002; 5:649 - 56; PMID: 12055633
  • Sugita S, Shin OH, Han W, Lao Y, Südhof TC. Synaptotagmins form a hierarchy of exocytotic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J 2002; 21:270 - 80; http://dx.doi.org/10.1093/emboj/21.3.270; PMID: 11823420
  • Suh YH, Terashima A, Petralia RS, Wenthold RJ, Isaac JT, Roche KW, et al. A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking. Nat Neurosci 2010; 13:338 - 43; http://dx.doi.org/10.1038/nn.2488; PMID: 20118925
  • Steegmaier M, Yang B, Yoo JS, Huang B, Shen M, Yu S, et al. Three novel proteins of the syntaxin/SNAP-25 family. J Biol Chem 1998; 273:34171 - 9; http://dx.doi.org/10.1074/jbc.273.51.34171; PMID: 9852078
  • Gordon DE, Bond LM, Sahlender DA, Peden AA. A targeted siRNA screen to identify SNAREs required for constitutive secretion in mammalian cells. Traffic 2010; 11:1191 - 204; http://dx.doi.org/10.1111/j.1600-0854.2010.01087.x; PMID: 20545907
  • Pan PY, Cai Q, Lin L, Lu PH, Duan S, Sheng ZH. SNAP-29-mediated modulation of synaptic transmission in cultured hippocampal neurons. J Biol Chem 2005; 280:25769 - 79; http://dx.doi.org/10.1074/jbc.M502356200; PMID: 15890653
  • Su Q, Mochida S, Tian JH, Mehta R, Sheng ZH. SNAP-29: a general SNARE protein that inhibits SNARE disassembly and is implicated in synaptic transmission. Proc Natl Acad Sci U S A 2001; 98:14038 - 43; http://dx.doi.org/10.1073/pnas.251532398; PMID: 11707603
  • Holt M, Varoqueaux F, Wiederhold K, Takamori S, Urlaub H, Fasshauer D, et al. Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J Biol Chem 2006; 281:17076 - 83; http://dx.doi.org/10.1074/jbc.M513838200; PMID: 16621800
  • Ramirez DM, Kavalali ET. Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol 2011; 21:275 - 82; http://dx.doi.org/10.1016/j.conb.2011.01.007; PMID: 21334193
  • Atasoy D, Ertunc M, Moulder KL, Blackwell J, Chung C, Su J, et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci 2008; 28:10151 - 66; http://dx.doi.org/10.1523/JNEUROSCI.2432-08.2008; PMID: 18829973
  • Zenisek D. Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. Proc Natl Acad Sci U S A 2008; 105:4922 - 7; http://dx.doi.org/10.1073/pnas.0709067105; PMID: 18339810
  • Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, et al. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 2010; 68:1143 - 58; http://dx.doi.org/10.1016/j.neuron.2010.11.034; PMID: 21172615
  • Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 2007; 55:648 - 61; http://dx.doi.org/10.1016/j.neuron.2007.07.030; PMID: 17698016
  • Danglot L, Zylbersztejn K, Petkovic M, Gauberti M, Meziane H, Combe R, et al. Absence of TI-VAMP/Vamp7 leads to increased anxiety in mice. J Neurosci 2012; 32:1962 - 8; http://dx.doi.org/10.1523/JNEUROSCI.4436-11.2012; PMID: 22323709
  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475:91 - 5; http://dx.doi.org/10.1038/nature10130; PMID: 21677641