1,612
Views
11
CrossRef citations to date
0
Altmetric
Reasoned Debate

G Protein-coupled receptors

Multi-turnover GDP/GTP exchange catalysis on heterotrimeric G proteins

Article: e29391 | Received 05 May 2014, Accepted 28 May 2014, Published online: 04 Jun 2014

References

  • Tolkovsky AM, Braun S, Levitzki A. Kinetics of interaction between β-receptors, GTP protein, and the catalytic unit of turkey erythrocyte adenylate cyclase. Proc Natl Acad Sci U S A 1982; 79:213 - 7; http://dx.doi.org/10.1073/pnas.79.2.213; PMID: 6281756
  • Tolkovsky AM, Levitzki A. Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 1978; 17:3795 - 810; http://dx.doi.org/10.1021/bi00611a020; PMID: 212105
  • Hanski E, Rimon G, Levitzki A. Adenylate cyclase activation by the β-adrenergic receptors as a diffusion-controlled process. Biochemistry 1979; 18:846 - 53; http://dx.doi.org/10.1021/bi00572a017; PMID: 217426
  • Cassel D, Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 1976; 452:538 - 51; http://dx.doi.org/10.1016/0005-2744(76)90206-0; PMID: 188466
  • Cassel D, Selinger Z. Catecholamine-induced release of [3H]-Gpp(NH)p from turkey erythrocyte adenylate cyclase. J Cyclic Nucleotide Res 1977; 3:11 - 22; PMID: 845287
  • Cassel D, Selinger Z. Mechanism of adenylate cyclase activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci U S A 1978; 75:4155 - 9; http://dx.doi.org/10.1073/pnas.75.9.4155; PMID: 212737
  • Cassel D, Levkovitz H, Selinger Z. The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. J Cyclic Nucleotide Res 1977; 3:393 - 406; PMID: 203612
  • Ross EM, Gilman AG. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem 1980; 49:533 - 64; http://dx.doi.org/10.1146/annurev.bi.49.070180.002533; PMID: 6105841
  • Braun S, Levitzki A. Adenosine receptor permanently coupled to turkey erythrocyte adenylate cyclase. Biochemistry 1979; 18:2134 - 8; http://dx.doi.org/10.1021/bi00577a045; PMID: 435473
  • Pedersen SE, Ross EM. Functional reconstitution of β-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Proc Natl Acad Sci U S A 1982; 79:7228 - 32; http://dx.doi.org/10.1073/pnas.79.23.7228; PMID: 6296825
  • Asano T, Ross EM. Catecholamine-stimulated guanosine 5′-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles. Biochemistry 1984; 23:5467 - 71; http://dx.doi.org/10.1021/bi00318a014; PMID: 6095900
  • Cerione RA, Regan JW, Nakata H, Codina J, Benovic JL, Gierschik P, Somers RL, Spiegel AM, Birnbaumer L, Lefkowitz RJ, et al. Functional reconstitution of the α 2-adrenergic receptor with guanine nucleotide regulatory proteins in phospholipid vesicles. J Biol Chem 1986; 261:3901 - 9; PMID: 3005307
  • Senogles SE, Benovic JL, Amlaiky N, Unson C, Milligan G, Vinitsky R, Spiegel AM, Caron MG. The D2-dopamine receptor of anterior pituitary is functionally associated with a pertussis toxin-sensitive guanine nucleotide binding protein. J Biol Chem 1987; 262:4860 - 7; PMID: 3104325
  • Cassel D, Eckstein F, Lowe M, Selinger Z. Determination of the turn-off reaction for the hormone-activated adenylate cyclase. J Biol Chem 1979; 254:9835 - 8; PMID: 489575
  • Doupnik CA, Davidson N, Lester HA, Kofuji P. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A 1997; 94:10461 - 6; http://dx.doi.org/10.1073/pnas.94.19.10461; PMID: 9294233
  • Berstein G, Blank JL, Jhon D-Y, Exton JH, Rhee SG, Ross EM. Phospholipase C-β 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 1992; 70:411 - 8; http://dx.doi.org/10.1016/0092-8674(92)90165-9; PMID: 1322796
  • Casey PJ, Fong HKW, Simon MI, Gilman AG. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 1990; 265:2383 - 90; PMID: 2105321
  • Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. p115 RhoGEF is a GTPase activating protein for Gα12 and Gα13. Science 1998; 280:2109 - 11; http://dx.doi.org/10.1126/science.280.5372.2109; PMID: 9641915
  • Mukhopadhyay S, Ross EM. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci U S A 1999; 96:9539 - 44; http://dx.doi.org/10.1073/pnas.96.17.9539; PMID: 10449728
  • Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000; 69:795 - 827; http://dx.doi.org/10.1146/annurev.biochem.69.1.795; PMID: 10966476
  • Lohse MJ, Hoffmann C, Nikolaev VO, Vilardaga J-P, Bünemann M. (2007). Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells. In Advances in Protein Chemistry: Mechanisms and Pathways of Heterotrimeric G Protein Signaling, Stephen RS, ed. (Academic Press), pp. 167-188.
  • Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299 - 336; http://dx.doi.org/10.1124/pr.110.004309; PMID: 22407612
  • Ross EM. Coordinating speed and amplitude in G-protein signaling. Curr Biol 2008; 18:R777 - 83; http://dx.doi.org/10.1016/j.cub.2008.07.035; PMID: 18786383