4,726
Views
142
CrossRef citations to date
0
Altmetric
Point of View

Global heterochromatin loss

A unifying theory of aging?

&
Pages 680-688 | Published online: 01 Jul 2012

References

  • Hansen JC. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 2002; 31:361 - 92; http://dx.doi.org/10.1146/annurev.biophys.31.101101.140858; PMID: 11988475
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251 - 60; http://dx.doi.org/10.1038/38444; PMID: 9305837
  • Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 2005; 6:71 - 5; http://dx.doi.org/10.1007/s10522-004-7386-7; PMID: 15834665
  • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693 - 705; http://dx.doi.org/10.1016/j.cell.2007.02.005; PMID: 17320507
  • Wallrath LL. Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev 1998; 8:147 - 53; http://dx.doi.org/10.1016/S0959-437X(98)80135-4; PMID: 9610404
  • Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science 2003; 301:798 - 802; http://dx.doi.org/10.1126/science.1086887; PMID: 12907790
  • Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005; 6:838 - 49; http://dx.doi.org/10.1038/nrm1761; PMID: 16261189
  • Eissenberg JC, Elgin SC. The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 2000; 10:204 - 10; http://dx.doi.org/10.1016/S0959-437X(00)00058-7; PMID: 10753776
  • Karpen GH, Allshire RC. The case for epigenetic effects on centromere identity and function. Trends Genet 1997; 13:489 - 96; http://dx.doi.org/10.1016/S0168-9525(97)01298-5; PMID: 9433139
  • Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011; 12:542 - 53; http://dx.doi.org/10.1038/nrg3035; PMID: 21765457
  • Trojer P, Reinberg D. Facultative heterochromatin: is there a distinctive molecular signature?. Mol Cell 2007; 28:1 - 13; http://dx.doi.org/10.1016/j.molcel.2007.09.011; PMID: 17936700
  • Villeponteau B. The heterochromatin loss model of aging. Exp Gerontol 1997; 32:383 - 94; http://dx.doi.org/10.1016/S0531-5565(96)00155-6; PMID: 9315443
  • Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 2006; 103:8703 - 8; http://dx.doi.org/10.1073/pnas.0602569103; PMID: 16738054
  • Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N, Mattout A, et al. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2005; 102:16690 - 5; http://dx.doi.org/10.1073/pnas.0506955102; PMID: 16269543
  • Brandt A, Krohne G, Grosshans J. The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell 2008; 7:541 - 51; http://dx.doi.org/10.1111/j.1474-9726.2008.00406.x; PMID: 18494863
  • Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, et al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 2012; 8:e1002473; http://dx.doi.org/10.1371/journal.pgen.1002473; PMID: 22291607
  • Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science 2006; 312:1059 - 63; http://dx.doi.org/10.1126/science.1127168; PMID: 16645051
  • Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130:223 - 33; http://dx.doi.org/10.1016/j.cell.2007.07.003; PMID: 17662938
  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science 2006; 311:1257; http://dx.doi.org/10.1126/science.1122446; PMID: 16456035
  • Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 2007; 27:183 - 96; http://dx.doi.org/10.1016/j.molcel.2007.05.034; PMID: 17643369
  • Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007; 397:84 - 93; http://dx.doi.org/10.1016/j.gene.2007.04.020; PMID: 17544228
  • Narita M. Cellular senescence and chromatin organisation. Br J Cancer 2007; 96:686 - 91; http://dx.doi.org/10.1038/sj.bjc.6603636; PMID: 17311013
  • Jeyapalan AS, Orellana RA, Suryawan A, O’Connor PM, Nguyen HV, Escobar J, et al. Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process. Am J Physiol Endocrinol Metab 2007; 293:E595 - 603; http://dx.doi.org/10.1152/ajpendo.00121.2007; PMID: 17551002
  • Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007; 27:2343 - 58; http://dx.doi.org/10.1128/MCB.02019-06; PMID: 17242207
  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 2005; 8:19 - 30; http://dx.doi.org/10.1016/j.devcel.2004.10.019; PMID: 15621527
  • Sedivy JM, Banumathy G, Adams PD. Aging by epigenetics--a consequence of chromatin damage?. Exp Cell Res 2008; 314:1909 - 17; http://dx.doi.org/10.1016/j.yexcr.2008.02.023; PMID: 18423606
  • Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113:703 - 16; http://dx.doi.org/10.1016/S0092-8674(03)00401-X; PMID: 12809602
  • Di Micco R, Sulli G, Dobreva M, Liontos M, Botrugno OA, Gargiulo G, et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 2011; 13:292 - 302; http://dx.doi.org/10.1038/ncb2170; PMID: 21336312
  • Ivanov A, Adams PD. A damage limitation exercise. Nat Cell Biol 2011; 13:193 - 5; http://dx.doi.org/10.1038/ncb0311-193; PMID: 21364567
  • Richardson B. Impact of aging on DNA methylation. Ageing Res Rev 2003; 2:245 - 61; http://dx.doi.org/10.1016/S1568-1637(03)00010-2; PMID: 12726774
  • Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 2009; 130:234 - 9; http://dx.doi.org/10.1016/j.mad.2008.12.003; PMID: 19150625
  • Bellizzi D, D’Aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B, et al. Global DNA methylation in old subjects is correlated with frailty. Age (Dordr) 2012; 34:169 - 79; http://dx.doi.org/10.1007/s11357-011-9216-6; PMID: 21336567
  • Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science 1983; 220:1055 - 7; http://dx.doi.org/10.1126/science.6844925; PMID: 6844925
  • Kim JY, Siegmund KD, Tavaré S, Shibata D. Age-related human small intestine methylation: evidence for stem cell niches. BMC Med 2005; 3:10; http://dx.doi.org/10.1186/1741-7015-3-10; PMID: 15975143
  • Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell 2006; 127:265 - 75; http://dx.doi.org/10.1016/j.cell.2006.10.003; PMID: 17055429
  • Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 2001; 61:3573 - 7; PMID: 11325821
  • Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 1994; 7:536 - 40; http://dx.doi.org/10.1038/ng0894-536; PMID: 7951326
  • Issa JP, Vertino PM, Boehm CD, Newsham IF, Baylin SB. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci U S A 1996; 93:11757 - 62; http://dx.doi.org/10.1073/pnas.93.21.11757; PMID: 8876210
  • Singhal RP, Mays-Hoopes LL, Eichhorn GL. DNA methylation in aging of mice. Mech Ageing Dev 1987; 41:199 - 210; http://dx.doi.org/10.1016/0047-6374(87)90040-6; PMID: 3431172
  • So K, Tamura G, Honda T, Homma N, Waki T, Togawa N, et al. Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci 2006; 97:1155 - 8; http://dx.doi.org/10.1111/j.1349-7006.2006.00302.x; PMID: 16952303
  • Waki T, Tamura G, Sato M, Motoyama T. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene 2003; 22:4128 - 33; http://dx.doi.org/10.1038/sj.onc.1206651; PMID: 12821947
  • Romanov GA, Vanyushin BF. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta 1981; 653:204 - 18; PMID: 7225396
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99:247 - 57; http://dx.doi.org/10.1016/S0092-8674(00)81656-6; PMID: 10555141
  • Lopatina N, Haskell JF, Andrews LG, Poole JC, Saldanha S, Tollefsbol T. Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J Cell Biochem 2002; 84:324 - 34; http://dx.doi.org/10.1002/jcb.10015; PMID: 11787061
  • Casillas MA Jr., Lopatina N, Andrews LG, Tollefsbol TO. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 2003; 252:33 - 43; http://dx.doi.org/10.1023/A:1025548623524; PMID: 14577574
  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19:187 - 91; http://dx.doi.org/10.1038/561; PMID: 9620779
  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386 - 9; http://dx.doi.org/10.1038/30764; PMID: 9620804
  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23:58 - 61; http://dx.doi.org/10.1038/12659; PMID: 10471499
  • Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 2004; 15:595 - 605; http://dx.doi.org/10.1016/j.molcel.2004.06.043; PMID: 15327775
  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 1999; 23:62 - 6; http://dx.doi.org/10.1038/12664; PMID: 10471500
  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999; 13:1924 - 35; http://dx.doi.org/10.1101/gad.13.15.1924; PMID: 10444591
  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000; 24:88 - 91; http://dx.doi.org/10.1038/71750; PMID: 10615135
  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 2001; 20:2536 - 44; http://dx.doi.org/10.1093/emboj/20.10.2536; PMID: 11350943
  • Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003; 31:2305 - 12; http://dx.doi.org/10.1093/nar/gkg332; PMID: 12711675
  • Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Zhao Y, Robertson KD. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 2004; 318:544 - 55; http://dx.doi.org/10.1016/j.bbrc.2004.04.058; PMID: 15120635
  • Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000; 25:269 - 77; http://dx.doi.org/10.1038/77023; PMID: 10888872
  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000; 25:338 - 42; http://dx.doi.org/10.1038/77124; PMID: 10888886
  • Santoro R, Grummt I. Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 2005; 25:2539 - 46; http://dx.doi.org/10.1128/MCB.25.7.2539-2546.2005; PMID: 15767661
  • Santoro R, Li J, Grummt I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 2002; 32:393 - 6; http://dx.doi.org/10.1038/ng1010; PMID: 12368916
  • Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 2010; 11:87 - 102; http://dx.doi.org/10.1007/s10522-009-9231-5; PMID: 19434510
  • Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 2002; 277:39195 - 201; http://dx.doi.org/10.1074/jbc.M205166200; PMID: 12154089
  • Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS One 2009; 4:e5622; http://dx.doi.org/10.1371/journal.pone.0005622; PMID: 19462008
  • Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 2007; 1100:60 - 74; http://dx.doi.org/10.1196/annals.1395.005; PMID: 17460165
  • Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet 2007; 23:413 - 8; http://dx.doi.org/10.1016/j.tig.2007.05.008; PMID: 17559965
  • Dimauro T, David G. Chromatin modifications: the driving force of senescence and aging?. Aging (Albany NY) 2009; 1:182 - 90; PMID: 20157508
  • Demontis F, Perrimon N. Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 2009; 136:983 - 93; http://dx.doi.org/10.1242/dev.027466; PMID: 19211682
  • Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008; 10:452 - 9; http://dx.doi.org/10.1038/ncb1708; PMID: 18311132
  • Shi S, Calhoun HC, Xia F, Li J, Le L, Li WX. JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 2006; 38:1071 - 6; http://dx.doi.org/10.1038/ng1860; PMID: 16892059
  • Li WX. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 2008; 18:545 - 51; http://dx.doi.org/10.1016/j.tcb.2008.08.008; PMID: 18848449
  • Shi M, Lin TH, Appell KC, Berg LJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 2008; 28:763 - 73; http://dx.doi.org/10.1016/j.immuni.2008.04.016; PMID: 18549798
  • Peng JC, Karpen GH. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 2007; 9:25 - 35; http://dx.doi.org/10.1038/ncb1514; PMID: 17159999
  • Peng JC, Karpen GH. Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet 2009; 5:e1000435; http://dx.doi.org/10.1371/journal.pgen.1000435; PMID: 19325889
  • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73:417 - 35; http://dx.doi.org/10.1146/annurev.biochem.73.011303.073651; PMID: 15189148
  • Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 1997; 89:381 - 91; http://dx.doi.org/10.1016/S0092-8674(00)80219-6; PMID: 9150138
  • Sinclair DA, Guarente L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 1997; 91:1033 - 42; http://dx.doi.org/10.1016/S0092-8674(00)80493-6; PMID: 9428525
  • Sinclair DA, Mills K, Guarente L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 1997; 277:1313 - 6; http://dx.doi.org/10.1126/science.277.5330.1313; PMID: 9271578
  • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13:2570 - 80; http://dx.doi.org/10.1101/gad.13.19.2570; PMID: 10521401
  • Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 2007; 8:692 - 702; http://dx.doi.org/10.1038/nrm2238; PMID: 17700626
  • Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell 2006; 126:257 - 68; http://dx.doi.org/10.1016/j.cell.2006.07.002; PMID: 16873059
  • Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006; 20:2913 - 21; http://dx.doi.org/10.1101/gad.1467506; PMID: 17079682
  • Sasaki T, Maier B, Bartke A, Scrable H. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 2006; 5:413 - 22; http://dx.doi.org/10.1111/j.1474-9726.2006.00235.x; PMID: 16939484
  • Sommer M, Poliak N, Upadhyay S, Ratovitski E, Nelkin BD, Donehower LA, et al. DeltaNp63alpha overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle 2006; 5:2005 - 11; http://dx.doi.org/10.4161/cc.5.17.3194; PMID: 16940753
  • Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410:227 - 30; http://dx.doi.org/10.1038/35065638; PMID: 11242085
  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430:686 - 9; http://dx.doi.org/10.1038/nature02789; PMID: 15254550
  • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004; 101:15998 - 6003; http://dx.doi.org/10.1073/pnas.0404184101; PMID: 15520384
  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011; 477:482 - 5; http://dx.doi.org/10.1038/nature10296; PMID: 21938067
  • Finkel T. Ageing: a toast to long life. Nature 2003; 425:132 - 3; http://dx.doi.org/10.1038/425132a; PMID: 12968159
  • Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005; 310:1193 - 6; http://dx.doi.org/10.1126/science.1115535; PMID: 16293764
  • Barja G. Free radicals and aging. Trends Neurosci 2004; 27:595 - 600; http://dx.doi.org/10.1016/j.tins.2004.07.005; PMID: 15374670
  • Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273:59 - 63; http://dx.doi.org/10.1126/science.273.5271.59; PMID: 8658196
  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418:344 - 8; http://dx.doi.org/10.1038/nature00829; PMID: 12124627
  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425:191 - 6; http://dx.doi.org/10.1038/nature01960; PMID: 12939617
  • Guarente L, Picard F. Calorie restriction--the SIR2 connection. Cell 2005; 120:473 - 82; http://dx.doi.org/10.1016/j.cell.2005.01.029; PMID: 15734680
  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003; 423:181 - 5; http://dx.doi.org/10.1038/nature01578; PMID: 12736687
  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403:795 - 800; http://dx.doi.org/10.1038/35001622; PMID: 10693811
  • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289:2126 - 8; http://dx.doi.org/10.1126/science.289.5487.2126; PMID: 11000115
  • Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005; 309:1861 - 4; http://dx.doi.org/10.1126/science.1113611; PMID: 16051752
  • Riesen M, Morgan A. Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell 2009; 8:624 - 32; http://dx.doi.org/10.1111/j.1474-9726.2009.00514.x; PMID: 19732046
  • Kaeberlein M, Steffen KK, Hu D, Dang N, Kerr EO, Tsuchiya M, et al. Comment on “HST2 mediates SIR2-independent life-span extension by calorie restriction”. [author reply] Science 2006; 312:1312 - , author reply 1312; http://dx.doi.org/10.1126/science.1124608; PMID: 16741098
  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2004; 2:E296; http://dx.doi.org/10.1371/journal.pbio.0020296; PMID: 15328540
  • Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008; 133:627 - 39; http://dx.doi.org/10.1016/j.cell.2008.03.030; PMID: 18485871
  • Li Y, Tollefsbol TO. p16(INK4a) suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS One 2011; 6:e17421; http://dx.doi.org/10.1371/journal.pone.0017421; PMID: 21390332
  • Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006; 2:e40; http://dx.doi.org/10.1371/journal.pgen.0020040; PMID: 16596166
  • Vaquero A, Reinberg D. Calorie restriction and the exercise of chromatin. Genes Dev 2009; 23:1849 - 69; http://dx.doi.org/10.1101/gad.1807009; PMID: 19608767
  • Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 2011; 31:4720 - 34; http://dx.doi.org/10.1128/MCB.06147-11; PMID: 21947282
  • Li Y, Liu L, Tollefsbol TO. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J 2010; 24:1442 - 53; http://dx.doi.org/10.1096/fj.09-149328; PMID: 20019239
  • Hass BS, Hart RW, Lu MH, Lyn-Cook BD. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res 1993; 295:281 - 9; PMID: 7507563
  • Muñoz-Najar U, Sedivy JM. Epigenetic control of aging. Antioxid Redox Signal 2011; 14:241 - 59; http://dx.doi.org/10.1089/ars.2010.3250; PMID: 20518699
  • Chouliaras L, van den Hove DL, Kenis G, Dela Cruz J, Lemmens MA, van Os J, et al. Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun 2011; 25:616 - 23; http://dx.doi.org/10.1016/j.bbi.2010.11.016; PMID: 21172419
  • Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005; 126:987 - 1002; http://dx.doi.org/10.1016/j.mad.2005.03.019; PMID: 15893363
  • Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 2007; 39:8 - 13; PMID: 17334224
  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004; 13:627 - 38; http://dx.doi.org/10.1016/S1097-2765(04)00094-2; PMID: 15023334
  • Chen D, Pan KZ, Palter JE, Kapahi P. Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 2007; 6:525 - 33; http://dx.doi.org/10.1111/j.1474-9726.2007.00305.x; PMID: 17521386
  • Giannakou ME, Partridge L. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 2007; 32:180 - 8; http://dx.doi.org/10.1016/j.tibs.2007.02.007; PMID: 17412594
  • Blagosklonny MV. Increasing healthy lifespan by suppressing aging in our lifetime: preliminary proposal. Cell Cycle 2010; 9:4788 - 94; http://dx.doi.org/10.4161/cc.9.24.14360; PMID: 21150328
  • Tavernarakis N. Ageing and the regulation of protein synthesis: a balancing act?. Trends Cell Biol 2008; 18:228 - 35; http://dx.doi.org/10.1016/j.tcb.2008.02.004; PMID: 18346894
  • Kaletsky R, Murphy CT. The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis Model Mech 2010; 3:415 - 9; http://dx.doi.org/10.1242/dmm.001040; PMID: 20354111
  • Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 2003; 5:811 - 6; http://dx.doi.org/10.1016/S1534-5807(03)00323-X; PMID: 14602080
  • Sun J, Folk D, Bradley TJ, Tower J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 2002; 161:661 - 72; PMID: 12072463
  • Sun J, Molitor J, Tower J. Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech Ageing Dev 2004; 125:341 - 9; http://dx.doi.org/10.1016/j.mad.2004.01.009; PMID: 15130751
  • Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 1999; 19:216 - 28; PMID: 9858546
  • Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003; 300:644 - 7; http://dx.doi.org/10.1126/science.1083614; PMID: 12690206
  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003; 424:277 - 83; http://dx.doi.org/10.1038/nature01789; PMID: 12845331
  • Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2003; 2:131 - 9; http://dx.doi.org/10.1046/j.1474-9728.2003.00045.x; PMID: 12882326
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11:298 - 300; PMID: 13332224
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408:239 - 47; http://dx.doi.org/10.1038/35041687; PMID: 11089981
  • Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, et al. Does oxidative damage to DNA increase with age?. Proc Natl Acad Sci U S A 2001; 98:10469 - 74; http://dx.doi.org/10.1073/pnas.171202698; PMID: 11517304
  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429:883 - 91; http://dx.doi.org/10.1038/nature02661; PMID: 15190254
  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 2003; 16:29 - 37; http://dx.doi.org/10.1152/physiolgenomics.00122.2003; PMID: 14679299
  • Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 2003; 421:643 - 8; http://dx.doi.org/10.1038/nature01385; PMID: 12540856
  • Murga M, Bunting S, Montaña MF, Soria R, Mulero F, Cañamero M, et al. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 2009; 41:891 - 8; http://dx.doi.org/10.1038/ng.420; PMID: 19620979
  • O’Driscoll M. Life can be stressful without ATR. Nat Genet 2009; 41:866 - 8; http://dx.doi.org/10.1038/ng0809-866; PMID: 19639025
  • Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 2007; 1:113 - 26; http://dx.doi.org/10.1016/j.stem.2007.03.002; PMID: 18371340
  • Yan SJ, Lim SJ, Shi S, Dutta P, Li WX. Unphosphorylated STAT and heterochromatin protect genome stability. FASEB J 2011; 25:232 - 41; http://dx.doi.org/10.1096/fj.10-169367; PMID: 20847228
  • Harley CB. Telomere loss: mitotic clock or genetic time bomb?. Mutat Res 1991; 256:271 - 82; PMID: 1722017
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458 - 60; http://dx.doi.org/10.1038/345458a0; PMID: 2342578
  • Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005; 37:961 - 76; http://dx.doi.org/10.1016/j.biocel.2004.10.013; PMID: 15743671
  • Herbig U, Sedivy JM. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech Ageing Dev 2006; 127:16 - 24; http://dx.doi.org/10.1016/j.mad.2005.09.002; PMID: 16229875
  • Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 1996; 31:443 - 8; http://dx.doi.org/10.1016/0531-5565(96)00005-8; PMID: 9415101
  • Lustig AJ. Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev 1998; 8:233 - 9; http://dx.doi.org/10.1016/S0959-437X(98)80146-9; PMID: 9610415
  • Chien CT, Buck S, Sternglanz R, Shore D. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 1993; 75:531 - 41; http://dx.doi.org/10.1016/0092-8674(93)90387-6; PMID: 8221892
  • Cockell M, Palladino F, Laroche T, Kyrion G, Liu C, Lustig AJ, et al. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J Cell Biol 1995; 129:909 - 24; http://dx.doi.org/10.1083/jcb.129.4.909; PMID: 7744964
  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature 1998; 392:569 - 74; http://dx.doi.org/10.1038/33345; PMID: 9560153
  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999; 96:701 - 12; http://dx.doi.org/10.1016/S0092-8674(00)80580-2; PMID: 10089885
  • Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 2007; 39:243 - 50; http://dx.doi.org/10.1038/ng1952; PMID: 17237781
  • Benetti R, Gonzalo S, Jaco I, Schotta G, Klatt P, Jenuwein T, et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 2007; 178:925 - 36; http://dx.doi.org/10.1083/jcb.200703081; PMID: 17846168
  • Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 2006; 8:416 - 24; http://dx.doi.org/10.1038/ncb1386; PMID: 16565708
  • Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 2011; 10:457 - 68; http://dx.doi.org/10.4161/cc.10.3.14707; PMID: 21248468
  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436:660 - 5; http://dx.doi.org/10.1038/nature03841; PMID: 16079837
  • Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34:1401 - 14; http://dx.doi.org/10.1016/S1357-2725(02)00053-5; PMID: 12200035
  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. DNA repair, genome stability, and aging. Cell 2005; 120:497 - 512; http://dx.doi.org/10.1016/j.cell.2005.01.028; PMID: 15734682
  • Pelicci PG. Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence?. J Clin Invest 2004; 113:4 - 7; PMID: 14702099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.