1,973
Views
93
CrossRef citations to date
0
Altmetric
Research Paper

SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression

&
Pages 695-700 | Published online: 01 Jul 2012

References

  • Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997; 88:471 - 81; http://dx.doi.org/10.1016/S0092-8674(00)81887-5; PMID: 9038338
  • Illingworth RS, Bird AP. CpG islands--‘a rough guide’. FEBS Lett 2009; 583:1713 - 20; http://dx.doi.org/10.1016/j.febslet.2009.04.012; PMID: 19376112
  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386 - 9; http://dx.doi.org/10.1038/30764; PMID: 9620804
  • Chandler SP, Guschin D, Landsberger N, Wolffe AP. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 1999; 38:7008 - 18; http://dx.doi.org/10.1021/bi990224y; PMID: 10353812
  • Guy J, Cheval H, Selfridge J, Bird A. The role of MeCP2 in the brain. Annu Rev Cell Dev Biol 2011; 27:631 - 52; http://dx.doi.org/10.1146/annurev-cellbio-092910-154121; PMID: 21721946
  • Kriaucionis S, Bird A. The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 2004; 32:1818 - 23; http://dx.doi.org/10.1093/nar/gkh349; PMID: 15034150
  • Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 2004; 36:339 - 41; http://dx.doi.org/10.1038/ng1327; PMID: 15034579
  • Dragich JM, Kim YH, Arnold AP, Schanen NC. Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol 2007; 501:526 - 42; http://dx.doi.org/10.1002/cne.21264; PMID: 17278130
  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23:185 - 8; http://dx.doi.org/10.1038/13810; PMID: 10508514
  • Kriaucionis S, Bird A. DNA methylation and Rett syndrome. Hum Mol Genet 2003; 12:Spec No 2 R221 - 7; http://dx.doi.org/10.1093/hmg/ddg286; PMID: 12928486
  • Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron 2007; 56:422 - 37; http://dx.doi.org/10.1016/j.neuron.2007.10.001; PMID: 17988628
  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302:890 - 3; http://dx.doi.org/10.1126/science.1090842; PMID: 14593184
  • Peddada S, Yasui DH, LaSalle JM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet 2006; 15:2003 - 14; http://dx.doi.org/10.1093/hmg/ddl124; PMID: 16682435
  • Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM. Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet 2009; 18:525 - 34; http://dx.doi.org/10.1093/hmg/ddn380; PMID: 19000991
  • Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci 2011; 124:833 - 8; http://dx.doi.org/10.1242/jcs.081067; PMID: 21378304
  • Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008; 60:961 - 74; http://dx.doi.org/10.1016/j.neuron.2008.10.012; PMID: 19109904
  • Zocchi L, Sassone-Corsi P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr Opin Neurobiol 2010; 20:432 - 40; http://dx.doi.org/10.1016/j.conb.2010.04.005; PMID: 20471240
  • Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A 2008; 105:15599 - 604; http://dx.doi.org/10.1073/pnas.0800612105; PMID: 18829436
  • Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008; 10:385 - 94; http://dx.doi.org/10.1038/ncb1700; PMID: 18344989
  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 2007; 26:3169 - 79; http://dx.doi.org/10.1038/sj.emboj.7601758; PMID: 17581637
  • Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006; 281:21745 - 54; http://dx.doi.org/10.1074/jbc.M602909200; PMID: 16751189
  • Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142:320 - 32; http://dx.doi.org/10.1016/j.cell.2010.06.020; PMID: 20655472
  • Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010; 67:953 - 66; http://dx.doi.org/10.1016/j.neuron.2010.08.044; PMID: 20869593
  • Michán S, Li Y, Chou MM, Parrella E, Ge H, Long JM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010; 30:9695 - 707; http://dx.doi.org/10.1523/JNEUROSCI.0027-10.2010; PMID: 20660252
  • Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466:1105 - 9; http://dx.doi.org/10.1038/nature09271; PMID: 20622856
  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325:834 - 40; http://dx.doi.org/10.1126/science.1175371; PMID: 19608861
  • Dornan D, Shimizu H, Burch L, Smith AJ, Hupp TR. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol Cell Biol 2003; 23:8846 - 61; http://dx.doi.org/10.1128/MCB.23.23.8846-8861.2003; PMID: 14612423
  • Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007; 450:440 - 4; http://dx.doi.org/10.1038/nature06268; PMID: 18004385
  • Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 2006; 52:255 - 69; http://dx.doi.org/10.1016/j.neuron.2006.09.037; PMID: 17046689
  • Tao J, Hu K, Chang Q, Wu H, Sherman NE, Martinowich K, et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci U S A 2009; 106:4882 - 7; http://dx.doi.org/10.1073/pnas.0811648106; PMID: 19225110
  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009; 459:55 - 60; http://dx.doi.org/10.1038/nature07925; PMID: 19424149
  • Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, et al. Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci 2009; 29:8288 - 97; http://dx.doi.org/10.1523/JNEUROSCI.0097-09.2009; PMID: 19553468