1,238
Views
52
CrossRef citations to date
0
Altmetric
Research Paper

Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo

, &
Pages 54-65 | Published online: 05 Dec 2012

References

  • Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 2007; 17:195 - 211; PMID: 17325692
  • Weichert W, Röske A, Niesporek S, Noske A, Buckendahl AC, Dietel M, et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 2008; 14:1669 - 77; http://dx.doi.org/10.1158/1078-0432.CCR-07-0990; PMID: 18347167
  • Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett 2009; 280:168 - 76; http://dx.doi.org/10.1016/j.canlet.2008.10.047; PMID: 19103471
  • Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 2012; 90:85 - 94; http://dx.doi.org/10.1038/icb.2011.100; PMID: 22124371
  • Beumer JH, Tawbi H. Role of histone deacetylases and their inhibitors in cancer biology and treatment. Curr Clin Pharmacol 2010; 5:196 - 208; http://dx.doi.org/10.2174/157488410791498770; PMID: 20406169
  • Ellis L, Hammers H, Pili R. Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 2009; 280:145 - 53; http://dx.doi.org/10.1016/j.canlet.2008.11.012; PMID: 19111391
  • Srivastava RK, Kurzrock R, Shankar S. MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 2010; 9:3254 - 66; http://dx.doi.org/10.1158/1535-7163.MCT-10-0582; PMID: 21041383
  • Martínez-Iglesias O, Ruiz-Llorente L, Sánchez-Martínez R, García L, Zambrano A, Aranda A. Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer. Clin Transl Oncol 2008; 10:395 - 8; http://dx.doi.org/10.1007/s12094-008-0221-x; PMID: 18628067
  • Jazirehi AR. Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anticancer Drugs 2010; 21:805 - 13; http://dx.doi.org/10.1097/CAD.0b013e32833dad91; PMID: 20679890
  • Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A. Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 2008; 22:2159 - 68; http://dx.doi.org/10.1038/leu.2008.243; PMID: 18784743
  • Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 2009; 15:3958 - 69; http://dx.doi.org/10.1158/1078-0432.CCR-08-2785; PMID: 19509172
  • Tan J, Cang S, Ma Y, Petrillo RL, Liu D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3:5; http://dx.doi.org/10.1186/1756-8722-3-5; PMID: 20132536
  • Thakur VS, Gupta K, Gupta S. Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis 2012; 33:377 - 84; http://dx.doi.org/10.1093/carcin/bgr277; PMID: 22114073
  • Vaid M, Prasad R, Singh T, Jones V, Katiyar SK. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators. Toxicol Appl Pharmacol 2012; 263:122 - 30; http://dx.doi.org/10.1016/j.taap.2012.06.013; PMID: 22749965
  • Nandakumar V, Vaid M, Katiyar SK. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 2011; 32:537 - 44; http://dx.doi.org/10.1093/carcin/bgq285; PMID: 21209038
  • Li TSC. Chinese and related North American herbs: phytopharmacology and therapeutic values. Boca Raton, FL: CRC Press, 2002.
  • Vaid M, Sharma SD, Katiyar SK. Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation. Carcinogenesis 2010; 31:2004 - 11; http://dx.doi.org/10.1093/carcin/bgq186; PMID: 20823108
  • Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, et al. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 2003; 278:35501 - 7; http://dx.doi.org/10.1074/jbc.M302967200; PMID: 12816951
  • Battle TE, Arbiser J, Frank DA. The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 2005; 106:690 - 7; http://dx.doi.org/10.1182/blood-2004-11-4273; PMID: 15802533
  • Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, et al. Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol 2004; 10:3459 - 63; PMID: 15526365
  • Park EJ, Min HY, Chung HJ, Hong JY, Kang YJ, Hung TM, et al. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 2009; 277:133 - 40; http://dx.doi.org/10.1016/j.canlet.2008.11.029; PMID: 19135778
  • Hahm ER, Arlotti JA, Marynowski SW, Singh SV. Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction. Clin Cancer Res 2008; 14:1248 - 57; http://dx.doi.org/10.1158/1078-0432.CCR-07-1926; PMID: 18281560
  • Leeman-Neill RJ, Cai Q, Joyce SC, Thomas SM, Bhola NE, Neill DB, et al. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin Cancer Res 2010; 16:2571 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-10-0333; PMID: 20388852
  • American Cancer Society. Cancer facts and figures. Available: http://www.cancer.org/. Accessed 2011, June 20.
  • Proctor RN. Tobacco and the global lung cancer epidemic. Nat Rev Cancer 2001; 1:82 - 6; http://dx.doi.org/10.1038/35094091; PMID: 11900255
  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55:10 - 30; http://dx.doi.org/10.3322/canjclin.55.1.10; PMID: 15661684
  • Maziak DE, Markman BR, MacKay JA, Evans WK, Cancer Care Ontario Practice Guidelines Initiative Lung Cancer Disease Site Group. Cancer Care Ontario Practice Guidelines Initiative Lung Cancer Disease Site Group. Photodynamic therapy in non-small cell lung cancer: a systematic review. Ann Thorac Surg 2004; 77:1484 - 91; http://dx.doi.org/10.1016/j.athoracsur.2003.07.017; PMID: 15063303
  • Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet 2000; 355:479 - 85; PMID: 10841143
  • Sharma SD, Meeran SM, Katiyar SK. Proanthocyanidins inhibit in vitro and in vivo growth of human non-small cell lung cancer cells by inhibiting the prostaglandin E(2) and prostaglandin E(2) receptors. Mol Cancer Ther 2010; 9:569 - 80; http://dx.doi.org/10.1158/1535-7163.MCT-09-0638; PMID: 20145019
  • Morgan DO. Principles of CDK regulation. Nature 1995; 374:131 - 4; http://dx.doi.org/10.1038/374131a0; PMID: 7877684
  • Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 1999; 287:821 - 8; http://dx.doi.org/10.1006/jmbi.1999.2640; PMID: 10222191
  • Davis CD, Ross SA. Dietary components impact histone modifications and cancer risk. Nutr Rev 2007; 65:88 - 94; http://dx.doi.org/10.1111/j.1753-4887.2007.tb00285.x; PMID: 17345961
  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37:391 - 400; http://dx.doi.org/10.1038/ng1531; PMID: 15765097
  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005; 435:1262 - 6; http://dx.doi.org/10.1038/nature03672; PMID: 15988529
  • Marsoni S, Damia G, Camboni G. A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics 2008; 3:164 - 71; http://dx.doi.org/10.4161/epi.3.3.6253; PMID: 18487953
  • Kelly WK, Marks PA. Drug insight: Histone deacetylase inhibitors--development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2005; 2:150 - 7; http://dx.doi.org/10.1038/ncponc0106; PMID: 16264908
  • Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45:495 - 528; http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095825; PMID: 15822187
  • Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000; 60:5165 - 70; PMID: 11016644
  • Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265:17174 - 9; PMID: 2211619
  • Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995; 11:211 - 9; PMID: 7624138
  • Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 2000; 33:261 - 74; http://dx.doi.org/10.1046/j.1365-2184.2000.00191.x; PMID: 11063129
  • Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 1995; 14:3 - 15; http://dx.doi.org/10.1007/BF00690207; PMID: 7606818
  • Singh T, Sharma SD, Katiyar SK. Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo. PLoS One 2011; 6:e27444; http://dx.doi.org/10.1371/journal.pone.0027444; PMID: 22087318
  • Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 2006; 27:2018 - 27; http://dx.doi.org/10.1093/carcin/bgl043; PMID: 16621886
  • Prasad R, Katiyar SK. Bioactive phytochemical proanthocyanidins inhibit growth of head and neck squamous cell carcinoma cells by targeting multiple signaling molecules. PLoS One 2012; 7:e46404; http://dx.doi.org/10.1371/journal.pone.0046404; PMID: 23050025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.