1,205
Views
41
CrossRef citations to date
0
Altmetric
Point of View

reSETting chromatin during transcription elongation

, &
Pages 10-15 | Published online: 20 Dec 2012

References

  • Kulaeva OI, Hsieh FK, Studitsky VM. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc Natl Acad Sci U S A 2010; 107:11325 - 30; http://dx.doi.org/10.1073/pnas.1001148107; PMID: 20534568
  • Kulaeva OI, Gaykalova DA, Pestov NA, Golovastov VV, Vassylyev DG, Artsimovitch I, et al. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat Struct Mol Biol 2009; 16:1272 - 8; http://dx.doi.org/10.1038/nsmb.1689; PMID: 19935686
  • Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 2006; 24:481 - 7; http://dx.doi.org/10.1016/j.molcel.2006.09.012; PMID: 17081996
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21:381 - 95; http://dx.doi.org/10.1038/cr.2011.22; PMID: 21321607
  • Workman JL. Nucleosome displacement in transcription. Genes Dev 2006; 20:2009 - 17; http://dx.doi.org/10.1101/gad.1435706; PMID: 16882978
  • Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2003; 278:8897 - 903; http://dx.doi.org/10.1074/jbc.M212134200; PMID: 12511561
  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 2003; 23:4207 - 18; http://dx.doi.org/10.1128/MCB.23.12.4207-4218.2003; PMID: 12773564
  • Schaft D, Roguev A, Kotovic KM, Shevchenko A, Sarov M, Shevchenko A, et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 2003; 31:2475 - 82; http://dx.doi.org/10.1093/nar/gkg372; PMID: 12736296
  • Li J, Moazed D, Gygi SP. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 2002; 277:49383 - 8; http://dx.doi.org/10.1074/jbc.M209294200; PMID: 12381723
  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005; 122:517 - 27; http://dx.doi.org/10.1016/j.cell.2005.06.026; PMID: 16122420
  • Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 2005; 3:e328; http://dx.doi.org/10.1371/journal.pbio.0030328; PMID: 16122352
  • Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 2005; 25:3305 - 16; http://dx.doi.org/10.1128/MCB.25.8.3305-3316.2005; PMID: 15798214
  • Drouin S, Laramée L, Jacques PE, Forest A, Bergeron M, Robert F. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet 2010; 6:e1001173; http://dx.doi.org/10.1371/journal.pgen.1001173; PMID: 21060864
  • Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 2005; 20:971 - 8; http://dx.doi.org/10.1016/j.molcel.2005.11.021; PMID: 16364921
  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005; 123:581 - 92; http://dx.doi.org/10.1016/j.cell.2005.10.023; PMID: 16286007
  • Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K, Hu C, et al. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 2010; 39:234 - 46; http://dx.doi.org/10.1016/j.molcel.2010.07.003; PMID: 20670892
  • Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 2005; 123:593 - 605; http://dx.doi.org/10.1016/j.cell.2005.10.025; PMID: 16286008
  • Li B, Gogol M, Carey M, Pattenden SG, Seidel C, Workman JL. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 2007; 21:1422 - 30; http://dx.doi.org/10.1101/gad.1539307; PMID: 17545470
  • Kim T, Buratowski S. Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 2009; 137:259 - 72; http://dx.doi.org/10.1016/j.cell.2009.02.045; PMID: 19379692
  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004; 116:51 - 61; http://dx.doi.org/10.1016/S0092-8674(03)01064-X; PMID: 14718166
  • Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 2002; 99:Suppl 4 16477 - 84; http://dx.doi.org/10.1073/pnas.172403699; PMID: 12177448
  • Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002; 9:1191 - 200; http://dx.doi.org/10.1016/S1097-2765(02)00542-7; PMID: 12086617
  • Deal RB, Henikoff JG, Henikoff S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 2010; 328:1161 - 4; http://dx.doi.org/10.1126/science.1186777; PMID: 20508129
  • Kaplan T, Liu CL, Erkmann JA, Holik J, Grunstein M, Kaufman PD, et al. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast. PLoS Genet 2008; 4:e1000270; http://dx.doi.org/10.1371/journal.pgen.1000270; PMID: 19023413
  • Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 2007; 27:393 - 405; http://dx.doi.org/10.1016/j.molcel.2007.07.011; PMID: 17679090
  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. Dynamics of replication-independent histone turnover in budding yeast. Science 2007; 315:1405 - 8; http://dx.doi.org/10.1126/science.1134053; PMID: 17347438
  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science 2003; 301:1090 - 3; http://dx.doi.org/10.1126/science.1085703; PMID: 12934006
  • Jamai A, Imoberdorf RM, Strubin M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol Cell 2007; 25:345 - 55; http://dx.doi.org/10.1016/j.molcel.2007.01.019; PMID: 17289583
  • Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 2012; 489:452 - 5; http://dx.doi.org/10.1038/nature11326; PMID: 22914091
  • Ginsburg DS, Govind CK, Hinnebusch AG. NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5. Mol Cell Biol 2009; 29:6473 - 87; http://dx.doi.org/10.1128/MCB.01033-09; PMID: 19822662
  • Schwabish MA, Struhl K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 2006; 22:415 - 22; http://dx.doi.org/10.1016/j.molcel.2006.03.014; PMID: 16678113
  • Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 2003; 301:1096 - 9; http://dx.doi.org/10.1126/science.1087374; PMID: 12934008
  • Jamai A, Puglisi A, Strubin M. Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase. Mol Cell 2009; 35:377 - 83; http://dx.doi.org/10.1016/j.molcel.2009.07.001; PMID: 19683500
  • Chen XF, Kuryan B, Kitada T, Tran N, Li JY, Kurdistani S, et al. The Rpd3 core complex is a chromatin stabilization module. Curr Biol 2012; 22:56 - 63; http://dx.doi.org/10.1016/j.cub.2011.11.042; PMID: 22177115
  • Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 1999; 13:686 - 97; http://dx.doi.org/10.1101/gad.13.6.686; PMID: 10090725
  • Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, Smolle M, et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 2011; 333:1758 - 60; http://dx.doi.org/10.1126/science.1206097; PMID: 21940898
  • Xella B, Goding C, Agricola E, Di Mauro E, Caserta M. The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol 2006; 59:1531 - 41; http://dx.doi.org/10.1111/j.1365-2958.2005.05031.x; PMID: 16468993
  • Vary JC Jr., Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B, et al. Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 2003; 23:80 - 91; http://dx.doi.org/10.1128/MCB.23.1.80-91.2003; PMID: 12482963
  • Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 2012; 19:884 - 92; http://dx.doi.org/10.1038/nsmb.2312; PMID: 22922743
  • Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, et al. Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 2012; 32:3479 - 85; http://dx.doi.org/10.1128/MCB.00389-12; PMID: 22751925
  • Li B, Jackson J, Simon MD, Fleharty B, Gogol M, Seidel C, et al. Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J Biol Chem 2009; 284:7970 - 6; http://dx.doi.org/10.1074/jbc.M808220200; PMID: 19155214
  • Quan TK, Hartzog GA. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 2010; 184:321 - 34; http://dx.doi.org/10.1534/genetics.109.111526; PMID: 19948887
  • Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 2003; 22:1846 - 56; http://dx.doi.org/10.1093/emboj/cdg179; PMID: 12682017
  • Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 2002; 22:6979 - 92; http://dx.doi.org/10.1128/MCB.22.20.6979-6992.2002; PMID: 12242279
  • Warner MH, Roinick KL, Arndt KM. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol Cell Biol 2007; 27:6103 - 15; http://dx.doi.org/10.1128/MCB.00772-07; PMID: 17576814
  • Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, et al. A key role for Chd1 in histone H3 dynamics at the 3′ ends of long genes in yeast. PLoS Genet 2012; 8:e1002811; http://dx.doi.org/10.1371/journal.pgen.1002811; PMID: 22807688
  • Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, et al. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 2012; 31:4388 - 403; http://dx.doi.org/10.1038/emboj.2012.289; PMID: 23103765
  • Hennig BP, Bendrin K, Zhou Y, Fischer T. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 2012; 13:997 - 1003; http://dx.doi.org/10.1038/embor.2012.146; PMID: 23032292
  • Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, et al. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 2012; 31:4375 - 87; http://dx.doi.org/10.1038/emboj.2012.267; PMID: 22990236
  • van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S, van Oudenaarden A, et al. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 2012; 150:1170 - 81; http://dx.doi.org/10.1016/j.cell.2012.06.049; PMID: 22959267
  • Kim T, Xu Z, Clauder-Münster S, Steinmetz LM, Buratowski S. Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 2012; 150:1158 - 69; http://dx.doi.org/10.1016/j.cell.2012.08.016; PMID: 22959268

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.