852
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Novel alterations in the epigenetic signature of MeCP2-targeted promoters in lymphocytes of Rett syndrome patients

, , , , , , & show all
Pages 246-251 | Received 07 Nov 2012, Accepted 23 Jan 2013, Published online: 24 Jan 2013

References

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23:185 - 8; http://dx.doi.org/10.1038/13810; PMID: 10508514
  • Percy AK. Rett syndrome: recent research progress. J Child Neurol 2008; 23:543 - 9; http://dx.doi.org/10.1177/0883073807309786; PMID: 18056689
  • Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010; 37:457 - 68; http://dx.doi.org/10.1016/j.molcel.2010.01.030; PMID: 20188665
  • Ballas N, Lioy DT, Grunseich C, Mandel G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 2009; 12:311 - 7; http://dx.doi.org/10.1038/nn.2275; PMID: 19234456
  • Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, et al. A role for glia in the progression of Rett’s syndrome. Nature 2011; 475:497 - 500; http://dx.doi.org/10.1038/nature10214; PMID: 21716289
  • Maezawa I, Jin LW. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 2010; 30:5346 - 56; http://dx.doi.org/10.1523/JNEUROSCI.5966-09.2010; PMID: 20392956
  • Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009; 29:5051 - 61; http://dx.doi.org/10.1523/JNEUROSCI.0324-09.2009; PMID: 19386901
  • Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012; 484:105 - 9; http://dx.doi.org/10.1038/nature10907; PMID: 22425995
  • Vecsler M, Simon AJ, Amariglio N, Rechavi G, Gak E. MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro. Epigenetics 2010; 5:61 - 7; http://dx.doi.org/10.4161/epi.5.1.10630; PMID: 20093853
  • Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR. A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Mol Cell 2003; 12:425 - 35; http://dx.doi.org/10.1016/S1097-2765(03)00276-4; PMID: 14536082
  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003; 302:885 - 9; http://dx.doi.org/10.1126/science.1086446; PMID: 14593183
  • Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 2006; 49:341 - 8; http://dx.doi.org/10.1016/j.neuron.2005.12.027; PMID: 16446138
  • Chadwick LH, Wade PA. MeCP2 in Rett syndrome: transcriptional repressor or chromatin architectural protein?. Curr Opin Genet Dev 2007; 17:121 - 5; http://dx.doi.org/10.1016/j.gde.2007.02.003; PMID: 17317146
  • Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 2005; 37:31 - 40; PMID: 15608638
  • Ghosh RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol 2010; 30:4656 - 70; http://dx.doi.org/10.1128/MCB.00379-10; PMID: 20679481
  • Abuhatzira L, Makedonski K, Kaufman Y, Razin A, Shemer R. MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics 2007; 2:214 - 22; http://dx.doi.org/10.4161/epi.2.4.5212; PMID: 18075316
  • Balmer D, Arredondo J, Samaco RC, LaSalle JM. MECP2 mutations in Rett syndrome adversely affect lymphocyte growth, but do not affect imprinted gene expression in blood or brain. Hum Genet 2002; 110:545 - 52; http://dx.doi.org/10.1007/s00439-002-0724-4; PMID: 12107440
  • Kaufmann WE, Jarrar MH, Wang JS, Lee YJ, Reddy S, Bibat G, et al. Histone modifications in Rett syndrome lymphocytes: a preliminary evaluation. Brain Dev 2005; 27:331 - 9; http://dx.doi.org/10.1016/j.braindev.2004.09.005; PMID: 16023547
  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008; 320:1224 - 9; http://dx.doi.org/10.1126/science.1153252; PMID: 18511691
  • Delgado IJ, Kim DS, Thatcher KN, LaSalle JM, Van den Veyver IB. Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients. BMC Med Genet 2006; 7:61; http://dx.doi.org/10.1186/1471-2350-7-61; PMID: 16859563
  • Urdinguio RG, Lopez-Serra L, Lopez-Nieva P, Alaminos M, Diaz-Uriarte R, Fernandez AF, et al. Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 2008; 3:e3669; http://dx.doi.org/10.1371/journal.pone.0003669; PMID: 18989361
  • Li LM, Arnosti DN. Long- and short-range transcriptional repressors induce distinct chromatin states on repressed genes. Curr Biol 2011; 21:406 - 12; http://dx.doi.org/10.1016/j.cub.2011.01.054; PMID: 21353562
  • Hagberg B. Condensed points for diagnostic criteria and stages in Rett syndrome. Eur Child Adolesc Psychiatry 1997; 6:Suppl 1 2 - 4; PMID: 9452910
  • Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, et al, RettSearch Consortium. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 2010; 68:944 - 50; http://dx.doi.org/10.1002/ana.22124; PMID: 21154482