2,093
Views
62
CrossRef citations to date
0
Altmetric
Review

Transcriptional regulation by the Set7 lysine methyltransferase

&
Pages 361-372 | Received 15 Feb 2013, Accepted 07 Mar 2013, Published online: 11 Mar 2013

References

  • Bird A. Perceptions of epigenetics. Nature 2007; 447:396 - 8; http://dx.doi.org/10.1038/nature05913; PMID: 17522671
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403:41 - 5; http://dx.doi.org/10.1038/47412; PMID: 10638745
  • Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000; 22:836 - 45; http://dx.doi.org/10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X; PMID: 10944586
  • Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074 - 80; http://dx.doi.org/10.1126/science.1063127; PMID: 11498575
  • Dai Z, Dai X, Xiang Q, Feng J, Wang J, Deng Y, et al. Genome-wide analysis of interactions between ATP-dependent chromatin remodeling and histone modifications. BMC Genomics 2009; 10:304; http://dx.doi.org/10.1186/1471-2164-10-304; PMID: 19586523
  • Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knaak MA, Bartholomew B. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res 2011; 39:8378 - 91; http://dx.doi.org/10.1093/nar/gkr535; PMID: 21749977
  • Keating ST, El-Osta A. Chromatin modifications associated with diabetes. J Cardiovasc Transl Res 2012; 5:399 - 412; http://dx.doi.org/10.1007/s12265-012-9380-9; PMID: 22639343
  • Couture JF, Trievel RC. Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Curr Opin Struct Biol 2006; 16:753 - 60; http://dx.doi.org/10.1016/j.sbi.2006.10.002; PMID: 17070031
  • Wei G, Hu G, Cui K, Zhao K. Genome-wide mapping of nucleosome occupancy, histone modifications, and gene expression using next-generation sequencing technology. Methods Enzymol 2012; 513:297 - 313; http://dx.doi.org/10.1016/B978-0-12-391938-0.00013-6; PMID: 22929775
  • Emes RD, Farrell WE. Make way for the ‘next generation’: application and prospects for genome-wide, epigenome-specific technologies in endocrine research. J Mol Endocrinol 2012; 49:R19 - 27; http://dx.doi.org/10.1530/JME-12-0045; PMID: 22525352
  • Noma K, Allis CD, Grewal SI. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 2001; 293:1150 - 5; http://dx.doi.org/10.1126/science.1064150; PMID: 11498594
  • Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 2001; 293:2453 - 5; http://dx.doi.org/10.1126/science.1064413; PMID: 11498546
  • Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 2012; 26:2604 - 20; http://dx.doi.org/10.1101/gad.201327.112; PMID: 23166019
  • Murray K. The Occurrence of Epsilon-N-Methyl Lysine in Histones. Biochemistry 1964; 3:10 - 5; http://dx.doi.org/10.1021/bi00889a003; PMID: 14114491
  • Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J 2006; 273:3121 - 35; http://dx.doi.org/10.1111/j.1742-4658.2006.05343.x; PMID: 16857008
  • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693 - 705; http://dx.doi.org/10.1016/j.cell.2007.02.005; PMID: 17320507
  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119:941 - 53; http://dx.doi.org/10.1016/j.cell.2004.12.012; PMID: 15620353
  • Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 2010; 466:508 - 12; http://dx.doi.org/10.1038/nature09272; PMID: 20622854
  • Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15:2343 - 60; http://dx.doi.org/10.1101/gad.927301; PMID: 11562345
  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 2003; 278:4035 - 40; http://dx.doi.org/10.1074/jbc.M210256200; PMID: 12427740
  • Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 2002; 30:73 - 6; http://dx.doi.org/10.1038/ng787; PMID: 11740495
  • Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 2004; 6:73 - 7; http://dx.doi.org/10.1038/ncb1076; PMID: 14661024
  • Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 2004; 101:7357 - 62; http://dx.doi.org/10.1073/pnas.0401866101; PMID: 15123803
  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005; 120:169 - 81; http://dx.doi.org/10.1016/j.cell.2005.01.001; PMID: 15680324
  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005; 122:517 - 27; http://dx.doi.org/10.1016/j.cell.2005.06.026; PMID: 16122420
  • Xiao T, Shibata Y, Rao B, Laribee RN, O’Rourke R, Buck MJ, et al. The RNA polymerase II kinase Ctk1 regulates positioning of a 5′ histone methylation boundary along genes. Mol Cell Biol 2007; 27:721 - 31; http://dx.doi.org/10.1128/MCB.01628-06; PMID: 17088384
  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39:311 - 8; http://dx.doi.org/10.1038/ng1966; PMID: 17277777
  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129:823 - 37; http://dx.doi.org/10.1016/j.cell.2007.05.009; PMID: 17512414
  • Martens JH, Verlaan M, Kalkhoven E, Zantema A. Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol 2003; 23:1808 - 16; http://dx.doi.org/10.1128/MCB.23.5.1808-1816.2003; PMID: 12588998
  • Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 2008; 283:26771 - 81; http://dx.doi.org/10.1074/jbc.M802800200; PMID: 18650421
  • El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205:2409 - 17; http://dx.doi.org/10.1084/jem.20081188; PMID: 18809715
  • Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58:1229 - 36; http://dx.doi.org/10.2337/db08-1666; PMID: 19208907
  • Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes 2009; 58:185 - 93; http://dx.doi.org/10.2337/db08-1150; PMID: 18984737
  • Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B. Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol 2011; 25:433 - 44; http://dx.doi.org/10.1210/me.2010-0482; PMID: 21273441
  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 2010; 21:2069 - 80; http://dx.doi.org/10.1681/ASN.2010060633; PMID: 20930066
  • Gaughan L, Stockley J, Wang N, McCracken SR, Treumann A, Armstrong K, et al. Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 2011; 39:1266 - 79; http://dx.doi.org/10.1093/nar/gkq861; PMID: 20959290
  • Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem 2005; 280:36244 - 53; http://dx.doi.org/10.1074/jbc.M505741200; PMID: 16141209
  • Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, et al. The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol 2011; 194:551 - 65; http://dx.doi.org/10.1083/jcb.201010090; PMID: 21859860
  • Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001; 8:1207 - 17; http://dx.doi.org/10.1016/S1097-2765(01)00405-1; PMID: 11779497
  • Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 2002; 16:479 - 89; http://dx.doi.org/10.1101/gad.967202; PMID: 11850410
  • Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 2002; 111:105 - 15; http://dx.doi.org/10.1016/S0092-8674(02)00964-9; PMID: 12372304
  • Veerappan CS, Avramova Z, Moriyama EN. Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi. BMC Evol Biol 2008; 8:190; http://dx.doi.org/10.1186/1471-2148-8-190; PMID: 18593478
  • Kurash JK, Lei H, Shen Q, Marston WL, Granda BW, Fan H, et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol Cell 2008; 29:392 - 400; http://dx.doi.org/10.1016/j.molcel.2007.12.025; PMID: 18280244
  • Mori S, Iwase K, Iwanami N, Tanaka Y, Kagechika H, Hirano T. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Bioorg Med Chem 2010; 18:8158 - 66; http://dx.doi.org/10.1016/j.bmc.2010.10.022; PMID: 21036620
  • Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, et al. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J 2003; 22:292 - 303; http://dx.doi.org/10.1093/emboj/cdg025; PMID: 12514135
  • Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A. Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 2011; 18:111 - 20; http://dx.doi.org/10.1016/j.chembiol.2010.11.014; PMID: 21276944
  • Hu P, Wang S, Zhang Y. How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by Ab initio QM/MM molecular dynamics simulations. J Am Chem Soc 2008; 130:3806 - 13; http://dx.doi.org/10.1021/ja075896n; PMID: 18311969
  • Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 2003; 421:652 - 6; http://dx.doi.org/10.1038/nature01378; PMID: 12540855
  • Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 2003; 12:177 - 85; http://dx.doi.org/10.1016/S1097-2765(03)00224-7; PMID: 12887903
  • Zhang X, Bruice TC. Histone lysine methyltransferase SET7/9: formation of a water channel precedes each methyl transfer. Biochemistry 2007; 46:14838 - 44; http://dx.doi.org/10.1021/bi7014579; PMID: 18044969
  • Ea CK, Baltimore D. Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc Natl Acad Sci U S A 2009; 106:18972 - 7; http://dx.doi.org/10.1073/pnas.0910439106; PMID: 19864627
  • Lehnertz B, Rogalski JC, Schulze FM, Yi L, Lin S, Kast J, et al. p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol Cell 2011; 43:673 - 80; http://dx.doi.org/10.1016/j.molcel.2011.08.006; PMID: 21855805
  • Okabe J, Orlowski C, Balcerczyk A, Tikellis C, Thomas MC, Cooper ME, et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 2012; 110:1067 - 76; http://dx.doi.org/10.1161/CIRCRESAHA.112.266171; PMID: 22403242
  • Wyrick JJ, Parra MA. The role of histone H2A and H2B post-translational modifications in transcription: a genomic perspective. Biochim Biophys Acta 2009; 1789:37 - 44; http://dx.doi.org/10.1016/j.bbagrm.2008.07.001; PMID: 18675384
  • Kassner I, Barandun M, Fey M, Rosenthal F, Hottiger MO. Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. Epigenetics Chromatin 2013; 6:1; http://dx.doi.org/10.1186/1756-8935-6-1; PMID: 23289424
  • Zegerman P, Canas B, Pappin D, Kouzarides T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 2002; 277:11621 - 4; http://dx.doi.org/10.1074/jbc.C200045200; PMID: 11850414
  • Kim HJ, Seol JH, Han JW, Youn HD, Cho EJ. Histone chaperones regulate histone exchange during transcription. EMBO J 2007; 26:4467 - 74; http://dx.doi.org/10.1038/sj.emboj.7601870; PMID: 17914459
  • Blum R, Vethantham V, Bowman C, Rudnicki M, Dynlacht BD. Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 2012; 26:2763 - 79; http://dx.doi.org/10.1101/gad.200113.112; PMID: 23249738
  • UK Prospective Diabetes Study (UKPDS). UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia 1991; 34:877 - 90; http://dx.doi.org/10.1007/BF00400195; PMID: 1778353
  • Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 2002; 287:2563 - 9; http://dx.doi.org/10.1001/jama.287.19.2563; PMID: 12020338
  • Simmonds RE, Foxwell BM. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford) 2008; 47:584 - 90; http://dx.doi.org/10.1093/rheumatology/kem298; PMID: 18234712
  • Ziyadeh FN. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 2004; 15:Suppl 1 S55 - 7; http://dx.doi.org/10.1097/01.ASN.0000093460.24823.5B; PMID: 14684674
  • Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005; 363:15 - 23; http://dx.doi.org/10.1016/j.gene.2005.09.010; PMID: 16289629
  • Hunter T. Protein modification: phosphorylation on tyrosine residues. Curr Opin Cell Biol 1989; 1:1168 - 81; http://dx.doi.org/10.1016/S0955-0674(89)80068-7; PMID: 2561455
  • Clarke S. Protein methylation. Curr Opin Cell Biol 1993; 5:977 - 83; http://dx.doi.org/10.1016/0955-0674(93)90080-A; PMID: 8129951
  • Grillo MA, Colombatto S. S-adenosylmethionine and protein methylation. Amino Acids 2005; 28:357 - 62; http://dx.doi.org/10.1007/s00726-005-0197-6; PMID: 15838589
  • Gill G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev 2003; 13:108 - 13; http://dx.doi.org/10.1016/S0959-437X(03)00021-2; PMID: 12672486
  • Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 2000; 11:141 - 8; http://dx.doi.org/10.1006/scdb.2000.0164; PMID: 10906270
  • Bannister AJ, Miska EA. Regulation of gene expression by transcription factor acetylation. Cell Mol Life Sci 2000; 57:1184 - 92; http://dx.doi.org/10.1007/PL00000758; PMID: 11028911
  • Berk AJ. Regulation of eukaryotic transcription factors by post-translational modification. Biochim Biophys Acta 1989; 1009:103 - 9; http://dx.doi.org/10.1016/0167-4781(89)90087-0; PMID: 2529903
  • Seo J, Lee KJ. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 2004; 37:35 - 44; http://dx.doi.org/10.5483/BMBRep.2004.37.1.035; PMID: 14761301
  • Zhang X, Wen H, Shi X. Lysine methylation: beyond histones. Acta Biochim Biophys Sin (Shanghai) 2012; 44:14 - 27; http://dx.doi.org/10.1093/abbs/gmr100; PMID: 22194010
  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432:353 - 60; http://dx.doi.org/10.1038/nature03117; PMID: 15525938
  • Estève PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 2009; 106:5076 - 81; http://dx.doi.org/10.1073/pnas.0810362106; PMID: 19282482
  • He Y, Korboukh I, Jin J, Huang J. Targeting protein lysine methylation and demethylation in cancers. Acta Biochim Biophys Sin (Shanghai) 2012; 44:70 - 9; http://dx.doi.org/10.1093/abbs/gmr109; PMID: 22194015
  • Munro S, Khaire N, Inche A, Carr S, La Thangue NB. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 2010; 29:2357 - 67; http://dx.doi.org/10.1038/onc.2009.511; PMID: 20140018
  • Rathert P, Dhayalan A, Ma H, Jeltsch A. Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins. Mol Biosyst 2008; 4:1186 - 90; http://dx.doi.org/10.1039/b811673c; PMID: 19396382
  • Del Rizzo PA, Trievel RC. Substrate and product specificities of SET domain methyltransferases. Epigenetics 2011; 6:1059 - 67; http://dx.doi.org/10.4161/epi.6.9.16069; PMID: 21847010
  • Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 2010; 107:21499 - 504; http://dx.doi.org/10.1073/pnas.1016147107; PMID: 21098664
  • Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, et al. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007; 27:6756 - 69; http://dx.doi.org/10.1128/MCB.00460-07; PMID: 17646389
  • Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006; 444:629 - 32; http://dx.doi.org/10.1038/nature05287; PMID: 17108971
  • Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L, et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci U S A 2011; 108:1925 - 30; http://dx.doi.org/10.1073/pnas.1019619108; PMID: 21245319
  • Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B, et al. The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell 2011; 43:681 - 8; http://dx.doi.org/10.1016/j.molcel.2011.08.007; PMID: 21855806
  • Kontaki H, Talianidis I. Lysine methylation regulates E2F1-induced cell death. Mol Cell 2010; 39:152 - 60; http://dx.doi.org/10.1016/j.molcel.2010.06.006; PMID: 20603083
  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2009; 41:125 - 9; http://dx.doi.org/10.1038/ng.268; PMID: 19098913
  • Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 2008; 30:336 - 47; http://dx.doi.org/10.1016/j.molcel.2008.03.022; PMID: 18471979
  • Stark LA, Dunlop MG. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol Cell Biol 2005; 25:5985 - 6004; http://dx.doi.org/10.1128/MCB.25.14.5985-6004.2005; PMID: 15988014
  • Nakajima T, Kitajima I, Shin H, Takasaki I, Shigeta K, Abeyama K, et al. Involvement of NF-kappa B activation in thrombin-induced human vascular smooth muscle cell proliferation. Biochem Biophys Res Commun 1994; 204:950 - 8; http://dx.doi.org/10.1006/bbrc.1994.2552; PMID: 7980566
  • Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE 2006; 2006:re13; http://dx.doi.org/10.1126/stke.3572006re13; PMID: 17047224
  • Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF. Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 2009; 28:1055 - 66; http://dx.doi.org/10.1038/emboj.2009.55; PMID: 19262565
  • Stevens C, La Thangue NB. E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 2003; 412:157 - 69; http://dx.doi.org/10.1016/S0003-9861(03)00054-7; PMID: 12667479
  • Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB. Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J 2011; 30:317 - 27; http://dx.doi.org/10.1038/emboj.2010.311; PMID: 21119616
  • Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18:753 - 61; PMID: 9447971
  • Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell 2004; 14:175 - 82; http://dx.doi.org/10.1016/S1097-2765(04)00182-0; PMID: 15099517
  • Couture JF, Collazo E, Hauk G, Trievel RC. Structural basis for the methylation site specificity of SET7/9. Nat Struct Mol Biol 2006; 13:140 - 6; http://dx.doi.org/10.1038/nsmb1045; PMID: 16415881
  • Masatsugu T, Yamamoto K. Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem Biophys Res Commun 2009; 381:22 - 6; http://dx.doi.org/10.1016/j.bbrc.2009.01.185; PMID: 19351588
  • Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W, et al. The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 2010; 7:234 - 44; http://dx.doi.org/10.1016/j.chom.2010.02.005; PMID: 20227666
  • Calnan DR, Webb AE, White JL, Stowe TR, Goswami T, Shi X, et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY) 2012; 4:462 - 79; PMID: 22820736
  • Harikrishnan KN, Chow MZ, Baker EK, Pal S, Bassal S, Brasacchio D, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 2005; 37:254 - 64; http://dx.doi.org/10.1038/ng1516; PMID: 15696166
  • Meehan R, Lewis J, Cross S, Nan X, Jeppesen P, Bird A. Transcriptional repression by methylation of CpG. J Cell Sci Suppl 1992; 16:9 - 14; PMID: 1297654
  • Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 1991; 64:1123 - 34; http://dx.doi.org/10.1016/0092-8674(91)90267-3; PMID: 2004419
  • Jhamb D, Rao N, Milner DJ, Song F, Cameron JA, Stocum DL, et al. Network based transcription factor analysis of regenerating axolotl limbs. BMC Bioinformatics 2011; 12:80; http://dx.doi.org/10.1186/1471-2105-12-80; PMID: 21418574

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.