1,041
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

High quality methylome-wide investigations through next-generation sequencing of DNA from a single archived dry blood spot

, , , , &
Pages 542-547 | Received 04 Mar 2013, Accepted 01 Apr 2013, Published online: 18 Apr 2013

References

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 1978; 274:775 - 80; http://dx.doi.org/10.1038/274775a0; PMID: 355893
  • Kwok JB. Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2010; 2:671 - 82; http://dx.doi.org/10.2217/epi.10.43; PMID: 22122050
  • Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82:696 - 711; http://dx.doi.org/10.1016/j.ajhg.2008.01.008; PMID: 18319075
  • Hedrich CM, Tsokos GC. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol Med 2011; 17:714 - 24; http://dx.doi.org/10.1016/j.molmed.2011.07.005; PMID: 21885342
  • Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol 2010; 7:510 - 9; http://dx.doi.org/10.1038/nrcardio.2010.104; PMID: 20603647
  • Sarkies P, Sale JE. Cellular epigenetic stability and cancer. Trends Genet 2012; 28:118 - 27; http://dx.doi.org/10.1016/j.tig.2011.11.005; PMID: 22226176
  • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447:433 - 40; http://dx.doi.org/10.1038/nature05919; PMID: 17522677
  • Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 2010; 465:721 - 7; http://dx.doi.org/10.1038/nature09230; PMID: 20535201
  • Jost JP, Saluz HP, Pawlak A. Estradiol down regulates the binding activity of an avian vitellogenin gene repressor (MDBP-2) and triggers a gradual demethylation of the mCpG pair of its DNA binding site. Nucleic Acids Res 1991; 19:5771 - 5; http://dx.doi.org/10.1093/nar/19.20.5771; PMID: 1945854
  • Yokomori N, Moore R, Negishi M. Sexually dimorphic DNA demethylation in the promoter of the Slp (sex-limited protein) gene in mouse liver. Proc Natl Acad Sci U S A 1995; 92:1302 - 6; http://dx.doi.org/10.1073/pnas.92.5.1302; PMID: 7877972
  • Sutherland JE, Costa M. Epigenetics and the environment. Ann N Y Acad Sci 2003; 983:151 - 60; http://dx.doi.org/10.1111/j.1749-6632.2003.tb05970.x; PMID: 12724220
  • Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20:63 - 8; http://dx.doi.org/10.1016/j.nut.2003.09.011; PMID: 14698016
  • Cooney CA. Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev Aging 1993; 57:261 - 73; PMID: 8300279
  • Boks MP, de Jong NM, Kas MJ, Vinkers CH, Fernandes C, Kahn RS, et al. Current status and future prospects for epigenetic psychopharmacology. Epigenetics 2012; 7:20 - 8; http://dx.doi.org/10.4161/epi.7.1.18688; PMID: 22207355
  • Melas PA, Rogdaki M, Ösby U, Schalling M, Lavebratt C, Ekström TJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J 2012; 26:2712 - 8; http://dx.doi.org/10.1096/fj.11-202069; PMID: 22426120
  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000; 24:88 - 91; http://dx.doi.org/10.1038/71750; PMID: 10615135
  • Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010; 11:191 - 203; http://dx.doi.org/10.1038/nrg2732; PMID: 20125086
  • Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011; 12:529 - 41; http://dx.doi.org/10.1038/nrg3000; PMID: 21747404
  • Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 2009; 1:177 - 200; http://dx.doi.org/10.2217/epi.09.14; PMID: 22122642
  • Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science 2008; 322:881 - 8; http://dx.doi.org/10.1126/science.1156409; PMID: 18988837
  • Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet 2009; 10:241 - 51; http://dx.doi.org/10.1038/nrg2554; PMID: 19293820
  • Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312:279 - 83; http://dx.doi.org/10.1126/science.1124779; PMID: 16614226
  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308:385 - 9; http://dx.doi.org/10.1126/science.1109557; PMID: 15761122
  • Fowler KE, Reitter CP, Walling GA, Griffin DK. Novel approach for deriving genome wide SNP analysis data from archived blood spots. BMC Res Notes 2012; 5:503; http://dx.doi.org/10.1186/1756-0500-5-503; PMID: 22974252
  • Xu H, Zhao Y, Liu Z, Zhu W, Zhou Y, Zhao Z. Bisulfite genomic sequencing of DNA from dried blood spot microvolume samples. Forensic Sci Int Genet 2012; 6:306 - 9; http://dx.doi.org/10.1016/j.fsigen.2011.06.007; PMID: 21737370
  • Beyan H, Down TA, Ramagopalan SV, Uvebrant K, Nilsson A, Holland ML, et al. Guthrie card methylomics identifies temporally stable epialleles that are present at birth in humans. Genome Res 2012; 22:2138 - 45; http://dx.doi.org/10.1101/gr.134304.111; PMID: 22919074
  • Hollegaard MV, Grauholm J, Nørgaard-Pedersen B, Hougaard DM. DNA methylome profiling using neonatal dried blood spot samples: A proof-of-principle study. Mol Genet Metab 2013; 108:225 - 31; http://dx.doi.org/10.1016/j.ymgme.2013.01.016; PMID: 23422032
  • Mei JV, Alexander JR, Adam BW, Hannon WH. Use of filter paper for the collection and analysis of human whole blood specimens. J Nutr 2001; 131:1631S - 6S; PMID: 11340130
  • Hollegaard MV, Grove J, Grauholm J, Kreiner-Møller E, Bønnelykke K, Nørgaard M, et al. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genet 2011; 12:58; http://dx.doi.org/10.1186/1471-2156-12-58; PMID: 21726430
  • Winkel BG, Hollegaard MV, Olesen MS, Svendsen JH, Haunsø S, Hougaard DM, et al. Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis. BMC Med Genet 2011; 12:22; http://dx.doi.org/10.1186/1471-2350-12-22; PMID: 21306642
  • Hollegaard MV, Thorsen P, Norgaard-Pedersen B, Hougaard DM. Genotyping whole-genome-amplified DNA from 3- to 25-year-old neonatal dried blood spot samples with reference to fresh genomic DNA. Electrophoresis 2009; 30:2532 - 5; http://dx.doi.org/10.1002/elps.200800655; PMID: 19639574
  • Aberg KA, McClay JL, Nerella S, Xie LY, Clark SL, Hudson AD, et al. MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case--control samples. Epigenomics 2012; 4:605 - 21; http://dx.doi.org/10.2217/epi.12.59; PMID: 23244307
  • Costello EJ, Angold A, Burns BJ, Stangl DK, Tweed DL, Erkanli A, et al. The Great Smoky Mountains Study of Youth. Goals, design, methods, and the prevalence of DSM-III-R disorders. Arch Gen Psychiatry 1996; 53:1129 - 36; http://dx.doi.org/10.1001/archpsyc.1996.01830120067012; PMID: 8956679
  • Worthman CM, Stallings JF. Hormone measures in finger-prick blood spot samples: new field methods for reproductive endocrinology. Am J Phys Anthropol 1997; 104:1 - 21; http://dx.doi.org/10.1002/(SICI)1096-8644(199709)104:1<1::AID-AJPA1>3.0.CO;2-V; PMID: 9331450
  • Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28:1097 - 105; http://dx.doi.org/10.1038/nbt.1682; PMID: 20852635
  • Hogart A, Lichtenberg J, Ajay SS, Anderson SM, Margulies EH, Bodine DM, NIH Intramural Sequencing Center. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res 2012; 22:1407 - 18; http://dx.doi.org/10.1101/gr.132878.111; PMID: 22684279
  • Lan X, Adams C, Landers M, Dudas M, Krissinger D, Marnellos G, et al. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology. PLoS One 2011; 6:e22226; http://dx.doi.org/10.1371/journal.pone.0022226; PMID: 21779396
  • Li N, Ye M, Li Y, Yan Z, Butcher LM, Sun J, et al. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 2010; 52:203 - 12; http://dx.doi.org/10.1016/j.ymeth.2010.04.009; PMID: 20430099
  • Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 2011; 6:34 - 44; http://dx.doi.org/10.4161/epi.6.1.13313; PMID: 20818161
  • Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 2010; 38:391 - 9; http://dx.doi.org/10.1093/nar/gkp992; PMID: 19906696
  • Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq and RNA-seq studies. Nat Methods 2009; 6:Suppl S22 - 32; http://dx.doi.org/10.1038/nmeth.1371; PMID: 19844228
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9:R137; http://dx.doi.org/10.1186/gb-2008-9-9-r137; PMID: 18798982
  • van den Oord EJ, Bukszar J, Rudolf G, Nerella S, McClay JL, Xie LY, et al. Estimation of CpG coverage in whole methylome next-generation sequencing studies. BMC Bioinformatics 2013; 14:50; http://dx.doi.org/10.1186/1471-2105-14-50; PMID: 23398781