3,583
Views
103
CrossRef citations to date
0
Altmetric
Research Paper

Large offspring syndrome

A bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann

, , &
Pages 591-601 | Received 12 Feb 2013, Accepted 10 Apr 2013, Published online: 10 May 2013

References

  • Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010; 18:8 - 14; http://dx.doi.org/10.1038/ejhg.2009.106; PMID: 19550435
  • Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2010; 154C:343 - 54; http://dx.doi.org/10.1002/ajmg.c.30267; PMID: 20803657
  • Rump P, Zeegers MP, van Essen AJ. Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis. Am J Med Genet A 2005; 136:95 - 104; http://dx.doi.org/10.1002/ajmg.a.30729; PMID: 15887271
  • Verona RI, Mann MR, Bartolomei MS. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 2003; 19:237 - 59; http://dx.doi.org/10.1146/annurev.cellbio.19.111401.092717; PMID: 14570570
  • Schulz R, Woodfine K, Menheniott TR, Bourc’his D, Bestor T, Oakey RJ. WAMIDEX: a web atlas of murine genomic imprinting and differential expression. Epigenetics 2008; 3:89 - 96; http://dx.doi.org/10.4161/epi.3.2.5900; PMID: 18398312
  • Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 2007; 19:281 - 9; http://dx.doi.org/10.1016/j.ceb.2007.04.013; PMID: 17467259
  • Weksberg R, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2005; 137C:12 - 23; http://dx.doi.org/10.1002/ajmg.c.30058; PMID: 16010676
  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32:232 - 46; http://dx.doi.org/10.1016/j.molcel.2008.08.022; PMID: 18951091
  • Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 2008; 15:668 - 79; http://dx.doi.org/10.1016/j.devcel.2008.08.015; PMID: 18848501
  • Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, et al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 2000; 9:2075 - 83; http://dx.doi.org/10.1093/hmg/9.14.2075; PMID: 10958646
  • Fitzpatrick GV, Soloway PD, Higgins MJ. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 2002; 32:426 - 31; http://dx.doi.org/10.1038/ng988; PMID: 12410230
  • Thakur N, Kanduri M, Holmgren C, Mukhopadhyay R, Kanduri C. Bidirectional silencing and DNA methylation-sensitive methylation-spreading properties of the Kcnq1 imprinting control region map to the same regions. J Biol Chem 2003; 278:9514 - 9; http://dx.doi.org/10.1074/jbc.M212203200; PMID: 12511562
  • DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003; 72:156 - 60; http://dx.doi.org/10.1086/346031; PMID: 12439823
  • Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 2003; 40:62 - 4; http://dx.doi.org/10.1136/jmg.40.1.62; PMID: 12525545
  • Halliday J, Oke K, Breheny S, Algar E, J Amor D. Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet 2004; 75:526 - 8; http://dx.doi.org/10.1086/423902; PMID: 15284956
  • Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L, et al. Assisted reproductive therapies and imprinting disorders--a preliminary British survey. Hum Reprod 2006; 21:1009 - 11; http://dx.doi.org/10.1093/humrep/dei405; PMID: 16361294
  • Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, Fryer A, et al. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 2009; 24:741 - 7; http://dx.doi.org/10.1093/humrep/den406; PMID: 19073614
  • Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003; 72:1338 - 41; http://dx.doi.org/10.1086/374824; PMID: 12772698
  • Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 1991; 351:153 - 5; http://dx.doi.org/10.1038/351153a0; PMID: 1709450
  • DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64:849 - 59; http://dx.doi.org/10.1016/0092-8674(91)90513-X; PMID: 1997210
  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000; 405:486 - 9; http://dx.doi.org/10.1038/35013106; PMID: 10839547
  • Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod 1998; 3:155 - 63; http://dx.doi.org/10.1530/ror.0.0030155; PMID: 9829550
  • Farin PW, Piedrahita JA, Farin CE. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 2006; 65:178 - 91; http://dx.doi.org/10.1016/j.theriogenology.2005.09.022; PMID: 16266745
  • Miles JR, Farin CE, Rodriguez KF, Alexander JE, Farin PW. Angiogenesis and morphometry of bovine placentas in late gestation from embryos produced in vivo or in vitro. Biol Reprod 2004; 71:1919 - 26; http://dx.doi.org/10.1095/biolreprod.104.031427; PMID: 15286036
  • Bertolini M, Anderson GB. The placenta as a contributor to production of large calves. Theriogenology 2002; 57:181 - 7; http://dx.doi.org/10.1016/S0093-691X(01)00665-3; PMID: 11775968
  • Bertolini M, Mason JB, Beam SW, Carneiro GF, Sween ML, Kominek DJ, et al. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 2002; 58:973 - 94; http://dx.doi.org/10.1016/S0093-691X(02)00935-4; PMID: 12212896
  • Hiendleder S, Mund C, Reichenbach HD, Wenigerkind H, Brem G, Zakhartchenko V, et al. Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques. Biol Reprod 2004; 71:217 - 23; http://dx.doi.org/10.1095/biolreprod.103.026062; PMID: 15028629
  • Hiendleder S, Wirtz M, Mund C, Klempt M, Reichenbach HD, Stojkovic M, et al. Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses. Biol Reprod 2006; 75:17 - 23; http://dx.doi.org/10.1095/biolreprod.105.043919; PMID: 16554415
  • Hori N, Nagai M, Hirayama M, Hirai T, Matsuda K, Hayashi M, et al. Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci 2010; 122:303 - 12; http://dx.doi.org/10.1016/j.anireprosci.2010.09.008; PMID: 21035970
  • Couldrey C, Lee RS. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming. BMC Dev Biol 2010; 10:27; http://dx.doi.org/10.1186/1471-213X-10-27; PMID: 20205951
  • Robbins KM, Chen Z, Wells KD, Rivera RM. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J Biomed Sci 2012; 19:95; http://dx.doi.org/10.1186/1423-0127-19-95; PMID: 23153226
  • Breukelman SP, Reinders JM, Jonker FH, de Ruigh L, Kaal LM, van Wagtendonk-de Leeuw AM, et al. Fetometry and fetal heart rates between Day 35 and 108 in bovine pregnancies resulting from transfer of either MOET, IVP-co-culture or IVP-SOF embryos. Theriogenology 2004; 61:867 - 82; http://dx.doi.org/10.1016/j.theriogenology.2003.07.001; PMID: 14757473
  • Bhogal B, Arnaudo A, Dymkowski A, Best A, Davis TL. Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression. Genomics 2004; 84:961 - 70; http://dx.doi.org/10.1016/j.ygeno.2004.08.004; PMID: 15533713
  • John RM, Lefebvre L. Developmental regulation of somatic imprints. Differentiation 2011; 81:270 - 80; http://dx.doi.org/10.1016/j.diff.2011.01.007; PMID: 21316143
  • Chung WY, Yuan L, Feng L, Hensle T, Tycko B. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms’ tumors. Hum Mol Genet 1996; 5:1101 - 8; http://dx.doi.org/10.1093/hmg/5.8.1101; PMID: 8842727
  • Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A 2006; 103:6623 - 8; http://dx.doi.org/10.1073/pnas.0511031103; PMID: 16614068
  • Matsuo K, Silke J, Gramatikoff K, Schaffner W. The CpG-specific methylase SssI has topoisomerase activity in the presence of Mg2+. Nucleic Acids Res 1994; 22:5354 - 9; http://dx.doi.org/10.1093/nar/22.24.5354; PMID: 7816625
  • Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, et al. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet 2012; 21:10 - 25; http://dx.doi.org/10.1093/hmg/ddr419; PMID: 21920939
  • Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 2002; 11:1317 - 25; http://dx.doi.org/10.1093/hmg/11.11.1317; PMID: 12019213
  • Hemberger M, Redies C, Krause R, Oswald J, Walter J, Fundele RH. H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. Dev Genes Evol 1998; 208:393 - 402; http://dx.doi.org/10.1007/s004270050195; PMID: 9732553
  • Curchoe C, Zhang S, Bin Y, Zhang X, Yang L, Feng D, et al. Promoter-specific expression of the imprinted IGF2 gene in cattle (Bos taurus). Biol Reprod 2005; 73:1275 - 81; http://dx.doi.org/10.1095/biolreprod.105.044727; PMID: 16120826
  • Paulsen M, Davies KR, Bowden LM, Villar AJ, Franck O, Fuermann M, et al. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum Mol Genet 1998; 7:1149 - 59; http://dx.doi.org/10.1093/hmg/7.7.1149; PMID: 9618174
  • Gould TD, Pfeifer K. Imprinting of mouse Kvlqt1 is developmentally regulated. Hum Mol Genet 1998; 7:483 - 7; http://dx.doi.org/10.1093/hmg/7.3.483; PMID: 9467008
  • Tunster SJ, Van de Pette M, John RM. Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis Model Mech 2011; 4:814 - 21; http://dx.doi.org/10.1242/dmm.007328; PMID: 21729874
  • Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM. Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev 1999; 13:3115 - 24; http://dx.doi.org/10.1101/gad.13.23.3115; PMID: 10601037
  • Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 1995; 375:34 - 9; http://dx.doi.org/10.1038/375034a0; PMID: 7536897
  • Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev 1997; 11:3128 - 42; http://dx.doi.org/10.1101/gad.11.23.3128; PMID: 9389646
  • Sun FL, Dean WL, Kelsey G, Allen ND, Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 1997; 389:809 - 15; http://dx.doi.org/10.1038/39797; PMID: 9349812
  • Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 2001; 27:153 - 4; http://dx.doi.org/10.1038/84769; PMID: 11175780
  • Blondin P, Farin PW, Crosier AE, Alexander JE, Farin CE. In vitro production of embryos alters levels of insulin-like growth factor-II messenger ribonucleic acid in bovine fetuses 63 days after transfer. Biol Reprod 2000; 62:384 - 9; http://dx.doi.org/10.1095/biolreprod62.2.384; PMID: 10642577
  • Kuentz P, Bailly A, Faure AC, Blagosklonov O, Amiot C, Bresson JL, et al. Child with Beckwith-Wiedemann syndrome born after assisted reproductive techniques to an human immunodeficiency virus serodiscordant couple. Fertil Steril 2011; 96:e35 - 8; http://dx.doi.org/10.1016/j.fertnstert.2011.04.030; PMID: 21550040
  • Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, et al. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 2006; 43:902 - 7; http://dx.doi.org/10.1136/jmg.2006.042135; PMID: 16825435
  • Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2009; 17:611 - 9; http://dx.doi.org/10.1038/ejhg.2008.233; PMID: 19092779
  • O’rourke PK, Entwistle KW, Arman C, Esdale CR, Burns BM. Fetal development and gestational changes in Bos taurus and Bos indicus genotypes in the tropics. Theriogenology 1991; 36:839 - 53; http://dx.doi.org/10.1016/0093-691X(91)90350-M; PMID: 16727053
  • Rivera RM, Kelley KL, Erdos GW, Hansen PJ. Alterations in ultrastructural morphology of two-cell bovine embryos produced in vitro and in vivo following a physiologically relevant heat shock. Biol Reprod 2003; 69:2068 - 77; http://dx.doi.org/10.1095/biolreprod.103.020347; PMID: 12930717
  • Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 2008; 17:1 - 14; http://dx.doi.org/10.1093/hmg/ddm280; PMID: 17901045