1,330
Views
34
CrossRef citations to date
0
Altmetric
Brief Report

Transient reduction of 5-methylcytosine and 5-hydroxymethylcytosine is associated with active DNA demethylation during regeneration of zebrafish fin

, &
Pages 899-906 | Received 08 Feb 2013, Accepted 08 Jul 2013, Published online: 18 Jul 2013

References

  • Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010; 11:607 - 20; http://dx.doi.org/10.1038/nrm2950; PMID: 20683471
  • Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem 2012; 81:97 - 117; http://dx.doi.org/10.1146/annurev-biochem-052610-091920; PMID: 22404632
  • Franchini DM, Schmitz KM, Petersen-Mahrt SK. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 2012; 46:419 - 41; http://dx.doi.org/10.1146/annurev-genet-110711-155451; PMID: 22974304
  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74:481 - 514; http://dx.doi.org/10.1146/annurev.biochem.74.010904.153721; PMID: 15952895
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13:484 - 92; http://dx.doi.org/10.1038/nrg3230; PMID: 22641018
  • Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 2009; 43:143 - 66; http://dx.doi.org/10.1146/annurev-genet-102108-134205; PMID: 19659441
  • Niehrs C, Schäfer A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 2012; 22:220 - 7; http://dx.doi.org/10.1016/j.tcb.2012.01.002; PMID: 22341196
  • Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 2012; 13:7 - 13; PMID: 22083101
  • Williams K, Christensen J, Helin K. DNA methylation: TET proteins-guardians of CpG islands?. EMBO Rep 2011; 13:28 - 35; http://dx.doi.org/10.1038/embor.2011.233; PMID: 22157888
  • Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012; 139:1895 - 902; http://dx.doi.org/10.1242/dev.070771; PMID: 22569552
  • Akimenko MA, Marí-Beffa M, Becerra J, Géraudie J. Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 2003; 226:190 - 201; http://dx.doi.org/10.1002/dvdy.10248; PMID: 12557198
  • Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn 2003; 226:202 - 10; http://dx.doi.org/10.1002/dvdy.10220; PMID: 12557199
  • Tanaka EM, Reddien PW. The cellular basis for animal regeneration. Dev Cell 2011; 21:172 - 85; http://dx.doi.org/10.1016/j.devcel.2011.06.016; PMID: 21763617
  • Slack JM. Amphibian muscle regeneration--dedifferentiation or satellite cells?. Trends Cell Biol 2006; 16:273 - 5; http://dx.doi.org/10.1016/j.tcb.2006.04.007; PMID: 16697200
  • Barrero MJ, Izpisua Belmonte JC. Regenerating the epigenome. EMBO Rep 2011; 12:208 - 15; http://dx.doi.org/10.1038/embor.2011.10; PMID: 21311559
  • Katsuyama T, Paro R. Epigenetic reprogramming during tissue regeneration. FEBS Lett 2011; 585:1617 - 24; http://dx.doi.org/10.1016/j.febslet.2011.05.010; PMID: 21569771
  • Thummel R, Burket CT, Hyde DR. Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. ScientificWorldJournal 2006; 6:Suppl 1 65 - 81; http://dx.doi.org/10.1100/tsw.2006.328; PMID: 17205188
  • Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, et al. Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 2007; 312:171 - 82; http://dx.doi.org/10.1016/j.ydbio.2007.09.022; PMID: 17961537
  • Martin CC, Laforest L, Akimenko MA, Ekker M. A role for DNA methylation in gastrulation and somite patterning. Dev Biol 1999; 206:189 - 205; http://dx.doi.org/10.1006/dbio.1998.9105; PMID: 9986732
  • Mhanni AA, McGowan RA. Global changes in genomic methylation levels during early development of the zebrafish embryo. Dev Genes Evol 2004; 214:412 - 7; http://dx.doi.org/10.1007/s00427-004-0418-0; PMID: 15309635
  • MacKay AB, Mhanni AA, McGowan RA, Krone PH. Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 2007; 50:778 - 85; http://dx.doi.org/10.1139/G07-055; PMID: 17893737
  • Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, et al. 5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics 2012; 7:383 - 9; http://dx.doi.org/10.4161/epi.19375; PMID: 22419071
  • Urasaki A, Morvan G, Kawakami K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 2006; 174:639 - 49; http://dx.doi.org/10.1534/genetics.106.060244; PMID: 16959904
  • Woods AL, Hall PA, Shepherd NA, Hanby AM, Waseem NH, Lane DP, et al. The assessment of proliferating cell nuclear antigen (PCNA) immunostaining in primary gastrointestinal lymphomas and its relationship to histological grade, S+G2+M phase fraction (flow cytometric analysis) and prognosis. Histopathology 1991; 19:21 - 7; http://dx.doi.org/10.1111/j.1365-2559.1991.tb00890.x; PMID: 1680784
  • Powell C, Elsaeidi F, Goldman D. Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b. J Neurosci 2012; 32:1096 - 109; http://dx.doi.org/10.1523/JNEUROSCI.5603-11.2012; PMID: 22262907
  • Poleo G, Brown CW, Laforest L, Akimenko MA. Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 2001; 221:380 - 90; http://dx.doi.org/10.1002/dvdy.1152; PMID: 11500975
  • Tittle RK, Sze R, Ng A, Nuckels RJ, Swartz ME, Anderson RM, et al. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 2011; 350:50 - 63; http://dx.doi.org/10.1016/j.ydbio.2010.11.009; PMID: 21126517
  • MacKay AB, Mhanni AA, McGowan RA, Krone PH. Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 2007; 50:778 - 85; http://dx.doi.org/10.1139/G07-055; PMID: 17893737
  • Nechiporuk A, Keating MT. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 2002; 129:2607 - 17; PMID: 12015289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.