973
Views
6
CrossRef citations to date
0
Altmetric
Point of View

Spt6

Two fundamentally distinct functions in the regulation of histone modification

, &
Pages 1249-1253 | Received 21 Aug 2013, Accepted 13 Sep 2013, Published online: 09 Oct 2013

References

  • Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013; 20:259 - 66; http://dx.doi.org/10.1038/nsmb.2470; PMID: 23463310
  • Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 2013; 1829:84 - 97; http://dx.doi.org/10.1016/j.bbagrm.2012.08.008; PMID: 22982198
  • Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell 2002; 9:541 - 52; http://dx.doi.org/10.1016/S1097-2765(02)00472-0; PMID: 11931762
  • Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 2007; 39:1235 - 44; http://dx.doi.org/10.1038/ng2117; PMID: 17873876
  • Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC, et al. Nucleosome organization in the Drosophila genome. Nature 2008; 453:358 - 62; http://dx.doi.org/10.1038/nature06929; PMID: 18408708
  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 2008; 18:1073 - 83; http://dx.doi.org/10.1101/gr.078261.108; PMID: 18550805
  • Wilhelm BT, Marguerat S, Aligianni S, Codlin S, Watt S, Bähler J. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast. Genome Biol 2011; 12:R82; http://dx.doi.org/10.1186/gb-2011-12-8-r82; PMID: 21859475
  • Kulaeva OI, Gaykalova DA, Pestov NA, Golovastov VV, Vassylyev DG, Artsimovitch I, Studitsky VM. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat Struct Mol Biol 2009; 16:1272 - 8; http://dx.doi.org/10.1038/nsmb.1689; PMID: 19935686
  • Kulaeva OI, Hsieh FK, Studitsky VM. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc Natl Acad Sci U S A 2010; 107:11325 - 30; http://dx.doi.org/10.1073/pnas.1001148107; PMID: 20534568
  • Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 2004; 36:900 - 5; http://dx.doi.org/10.1038/ng1400; PMID: 15247917
  • Endoh M, Zhu W, Hasegawa J, Watanabe H, Kim DK, Aida M, Inukai N, Narita T, Yamada T, Furuya A, et al. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol Cell Biol 2004; 24:3324 - 36; http://dx.doi.org/10.1128/MCB.24.8.3324-3336.2004; PMID: 15060154
  • Ardehali MB, Yao J, Adelman K, Fuda NJ, Petesch SJ, Webb WW, Lis JT. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 2009; 28:1067 - 77; http://dx.doi.org/10.1038/emboj.2009.56; PMID: 19279664
  • Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. Genet Res Int 2011; 2011:625210; http://dx.doi.org/10.4061/2011/625210; PMID: 22567361
  • Hartzog GA, Wada T, Handa H, Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev 1998; 12:357 - 69; http://dx.doi.org/10.1101/gad.12.3.357; PMID: 9450930
  • Bortvin A, Winston F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 1996; 272:1473 - 6; http://dx.doi.org/10.1126/science.272.5267.1473; PMID: 8633238
  • Close D, Johnson SJ, Sdano MA, McDonald SM, Robinson H, Formosa T, Hill CP. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. J Mol Biol 2011; 408:697 - 713; http://dx.doi.org/10.1016/j.jmb.2011.03.002; PMID: 21419780
  • Johnson SJ, Close D, Robinson H, Vallet-Gely I, Dove SL, Hill CP. Crystal structure and RNA binding of the Tex protein from Pseudomonas aeruginosa. J Mol Biol 2008; 377:1460 - 73; http://dx.doi.org/10.1016/j.jmb.2008.01.096; PMID: 18321528
  • McDonald SM, Close D, Xin H, Formosa T, Hill CP. Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding. Mol Cell 2010; 40:725 - 35; http://dx.doi.org/10.1016/j.molcel.2010.11.014; PMID: 21094070
  • Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012; 336:1723 - 5; http://dx.doi.org/10.1126/science.1219651; PMID: 22745433
  • Mayer A, Lidschreiber M, Siebert M, Leike K, Söding J, Cramer P. Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 2010; 17:1272 - 8; http://dx.doi.org/10.1038/nsmb.1903; PMID: 20818391
  • Smolle M, Workman JL, Venkatesh S. reSETting chromatin during transcription elongation. Epigenetics 2013; 8:10 - 5; http://dx.doi.org/10.4161/epi.23333; PMID: 23257840
  • Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 2012; 19:884 - 92; http://dx.doi.org/10.1038/nsmb.2312; PMID: 22922743
  • Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, Natarajan K, Workman JL. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 2012; 489:452 - 5; http://dx.doi.org/10.1038/nature11326; PMID: 22914091
  • Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS, Howe L. Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 2012; 32:3479 - 85; http://dx.doi.org/10.1128/MCB.00389-12; PMID: 22751925
  • Youdell ML, Kizer KO, Kisseleva-Romanova E, Fuchs SM, Duro E, Strahl BD, Mellor J. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36. Mol Cell Biol 2008; 28:4915 - 26; http://dx.doi.org/10.1128/MCB.00001-08; PMID: 18541663
  • Vojnic E, Simon B, Strahl BD, Sattler M, Cramer P. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J Biol Chem 2006; 281:13 - 5; http://dx.doi.org/10.1074/jbc.C500423200; PMID: 16286474
  • Yoh SM, Lucas JS, Jones KA. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev 2008; 22:3422 - 34; http://dx.doi.org/10.1101/gad.1720008; PMID: 19141475
  • Begum NA, Stanlie A, Nakata M, Akiyama H, Honjo T. The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation. J Biol Chem 2012; 287:32415 - 29; http://dx.doi.org/10.1074/jbc.M112.351569; PMID: 22843687
  • Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 2004; 14:155 - 64; http://dx.doi.org/10.1016/j.gde.2004.02.001; PMID: 15196462
  • Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, Lv R, Li X, Villen J, Gygi SP, et al. The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev 2012; 26:1364 - 75; http://dx.doi.org/10.1101/gad.186056.111; PMID: 22713873
  • Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, Testa G. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 2008; 3:e3034; http://dx.doi.org/10.1371/journal.pone.0003034; PMID: 18716661
  • Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449:731 - 4; http://dx.doi.org/10.1038/nature06145; PMID: 17713478
  • Wang AH, Zare H, Mousavi K, Wang C, Moravec CE, Sirotkin HI, Ge K, Gutierrez-Cruz G, Sartorelli V. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. EMBO J 2013; 32:1075 - 86; http://dx.doi.org/10.1038/emboj.2013.54; PMID: 23503590
  • Ivanovska I, Jacques PE, Rando OJ, Robert F, Winston F. Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol Cell Biol 2011; 31:531 - 41; http://dx.doi.org/10.1128/MCB.01068-10; PMID: 21098123
  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. Dynamics of replication-independent histone turnover in budding yeast. Science 2007; 315:1405 - 8; http://dx.doi.org/10.1126/science.1134053; PMID: 17347438
  • Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 2005; 19:804 - 14; http://dx.doi.org/10.1101/gad.1259805; PMID: 15774717
  • Thiriet C, Hayes JJ. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev 2005; 19:677 - 82; http://dx.doi.org/10.1101/gad.1265205; PMID: 15769942
  • Kaplan CD, Holland MJ, Winston F. Interaction between transcription elongation factors and mRNA 3′-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem 2005; 280:913 - 22; http://dx.doi.org/10.1074/jbc.M411108200; PMID: 15531585
  • Kiely CM, Marguerat S, Garcia JF, Madhani HD, Bähler J, Winston F. Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 2011; 31:4193 - 204; http://dx.doi.org/10.1128/MCB.05568-11; PMID: 21844224
  • Kato H, Okazaki K, Iida T, Nakayama J, Murakami Y, Urano T. Spt6 prevents transcription-coupled loss of posttranslationally modified histone H3. Sci Rep 2013; 3:2186; http://dx.doi.org/10.1038/srep02186; PMID: 23851719
  • Lee JH, Skalnik DG. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2008; 28:609 - 18; http://dx.doi.org/10.1128/MCB.01356-07; PMID: 17998332
  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008; 453:1239 - 43; http://dx.doi.org/10.1038/nature07002; PMID: 18488015
  • Orphanides G, Reinberg D. RNA polymerase II elongation through chromatin. Nature 2000; 407:471 - 5; http://dx.doi.org/10.1038/35035000; PMID: 11028991
  • Hirota K, Ohta K. Transcription of mRNA-type long non-coding RNAs (mlonRNAs) disrupts chromatin array. Commun Integr Biol 2009; 2:25 - 6; http://dx.doi.org/10.4161/cib.2.1.7378; PMID: 19704860
  • Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 2008; 456:130 - 4; http://dx.doi.org/10.1038/nature07348; PMID: 18820678
  • Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19:698 - 711; http://dx.doi.org/10.1016/j.devcel.2010.10.005; PMID: 21074720