904
Views
35
CrossRef citations to date
0
Altmetric
Brief Report

Longitudinal epigenetic drift in mice perinatally exposed to lead

, , , &
Pages 934-941 | Received 01 Apr 2014, Accepted 25 Apr 2014, Published online: 01 May 2014

References

  • Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift?. Hum Mol Genet 2013; 22:R1 R7 - 15; http://dx.doi.org/10.1093/hmg/ddt375; PMID: 23918660
  • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447:433 - 40; http://dx.doi.org/10.1038/nature05919; PMID: 17522677
  • Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Invest 2014; 124:24 - 9; http://dx.doi.org/10.1172/JCI69735; PMID: 24382386
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14:R115; http://dx.doi.org/10.1186/gb-2013-14-10-r115; PMID: 24138928
  • Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 2007; 1100:60 - 74; http://dx.doi.org/10.1196/annals.1395.005; PMID: 17460165
  • Dosunmu R, Alashwal H, Zawia NH. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech Ageing Dev 2012; 133:435 - 43; http://dx.doi.org/10.1016/j.mad.2012.05.003; PMID: 22613225
  • Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST. Age-associated DNA methylation in pediatric populations. Genome Res 2012; 22:623 - 32; http://dx.doi.org/10.1101/gr.125187.111; PMID: 22300631
  • Faulk C, Dolinoy DC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 2011; 6:791 - 7; http://dx.doi.org/10.4161/epi.6.7.16209; PMID: 21636976
  • Sauer J, Jang H, Zimmerly EM, Kim KC, Liu Z, Chanson A, Smith DE, Mason JB, Friso S, Choi SW. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon. Br J Nutr 2010; 104:24 - 30; http://dx.doi.org/10.1017/S0007114510000322; PMID: 20205967
  • Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, Champagne FA. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A 2013; 110:9956 - 61; http://dx.doi.org/10.1073/pnas.1214056110; PMID: 23716699
  • Kim J, Sartor MA, Rozek LS, Faulk C, Anderson A, Jones TR, Nahar MS, Dolinoy DC. Perinatal bisphenol A exposure promotes dose-dependent alterations on the mouse methylome. BMC Genomics 2014; 15:30; http://dx.doi.org/10.1186/1471-2164-15-30; PMID: 24433282
  • Maegawa S, Gough SM, Watanabe-Okochi N, Lu Y, Zhang N, Castoro RJ, Estecio MR, Jelinek J, Liang S, Kitamura T, et al. Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res 2014; 24:580 - 91; http://dx.doi.org/10.1101/gr.157529.113; PMID: 24414704
  • Luo M, Xu Y, Cai R, Tang Y, Ge MM, Liu ZH, Xu L, Hu F, Ruan DY, Wang HL. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett 2014; 225:78 - 85; http://dx.doi.org/10.1016/j.toxlet.2013.11.025; PMID: 24291742
  • Bihaqi SW, Huang H, Wu J, Zawia NH. Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer’s disease. J Alzheimers Dis 2011; 27:819 - 33; PMID: 21891863
  • (ATSDR). AfTSaDR. Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, 2007.
  • Betts KS. CDC updates guidelines for children’s lead exposure. Environ Health Perspect 2012; 120:a268; http://dx.doi.org/10.1289/ehp.120-a268; PMID: 22759595
  • Bellinger DC, Bellinger AM. Childhood lead poisoning: the torturous path from science to policy. J Clin Invest 2006; 116:853 - 7; http://dx.doi.org/10.1172/JCI28232; PMID: 16585952
  • Faulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC. Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 2013; 5:487 - 500; http://dx.doi.org/10.2217/epi.13.49; PMID: 24059796
  • Faulk C, Barks A, Dolinoy DC. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons. BMC Genomics 2013; 14:48; http://dx.doi.org/10.1186/1471-2164-14-48; PMID: 23343009
  • Anderson OS, Nahar MS, Faulk C, Jones TR, Liao C, Kannan K, Weinhouse C, Rozek LS, Dolinoy DC. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen 2012; 53:334 - 42; http://dx.doi.org/10.1002/em.21692; PMID: 22467340
  • Chen LM, Nergard JC, Ni L, Rosser CJ, Chai KX. Long-term exposure to cigarette smoke extract induces hypomethylation at the RUNX3 and IGF2-H19 loci in immortalized human urothelial cells. PLoS One 2013; 8:e65513; http://dx.doi.org/10.1371/journal.pone.0065513; PMID: 23724145
  • Sharif J, Shinkai Y, Koseki H. Is there a role for endogenous retroviruses to mediate long-term adaptive phenotypic response upon environmental inputs?. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110340; http://dx.doi.org/10.1098/rstb.2011.0340; PMID: 23166400
  • Waterland RA, Lin J-R, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 2006; 15:705 - 16; http://dx.doi.org/10.1093/hmg/ddi484; PMID: 16421170
  • Alashwal H, Dosunmu R, Zawia NH. Integration of genome-wide expression and methylation data: relevance to aging and Alzheimer’s disease. Neurotoxicology 2012; 33:1450 - 3; http://dx.doi.org/10.1016/j.neuro.2012.06.008; PMID: 22743688
  • Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 2013; 14:R102; http://dx.doi.org/10.1186/gb-2013-14-9-r102; PMID: 24034465
  • Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 2008; 299:2877 - 83; http://dx.doi.org/10.1001/jama.299.24.2877; PMID: 18577732
  • Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet 2002; 18:348 - 51; http://dx.doi.org/10.1016/S0168-9525(02)02709-9; PMID: 12127774
  • Bernal AJ, Dolinoy DC, Huang D, Skaar DA, Weinhouse C, Jirtle RL. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. FASEB J 2013; 27:665 - 71; http://dx.doi.org/10.1096/fj.12-220350; PMID: 23118028
  • Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 2007; 104:13056 - 61; http://dx.doi.org/10.1073/pnas.0703739104; PMID: 17670942
  • Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 2010; 88:938 - 44; http://dx.doi.org/10.1002/bdra.20685; PMID: 20568270
  • Peluso M, Bollati V, Munnia A, Srivatanakul P, Jedpiyawongse A, Sangrajrang S, Piro S, Ceppi M, Bertazzi PA, Boffetta P, et al. DNA methylation differences in exposed workers and nearby residents of the Ma Ta Phut industrial estate, Rayong, Thailand. Int J Epidemiol 2012; 41:1753 - 60, discussion 1761-3; http://dx.doi.org/10.1093/ije/dys129; PMID: 23064502
  • Lange NE, Sordillo J, Tarantini L, Bollati V, Sparrow D, Vokonas P, Zanobetti A, Schwartz J, Baccarelli A, Litonjua AA, et al. Alu and LINE-1 methylation and lung function in the normative ageing study. BMJ Open 2012; 2:2; http://dx.doi.org/10.1136/bmjopen-2012-001231; PMID: 23075571
  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 2008; 105:17046 - 9; http://dx.doi.org/10.1073/pnas.0806560105; PMID: 18955703
  • Roberts CT, Owens JA, Sferruzzi-Perri AN. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: lessons from mice and guinea pigs. Placenta 2008; 29:Suppl A S42 - 7; http://dx.doi.org/10.1016/j.placenta.2007.12.002; PMID: 18191196
  • Issa JP, Vertino PM, Boehm CD, Newsham IF, Baylin SB. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci U S A 1996; 93:11757 - 62; http://dx.doi.org/10.1073/pnas.93.21.11757; PMID: 8876210
  • Vu TH, Jirtle RL, Hoffman AR. Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene. Cytogenet Genome Res 2006; 113:202 - 8; http://dx.doi.org/10.1159/000090833; PMID: 16575181
  • Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120151; http://dx.doi.org/10.1098/rstb.2012.0151; PMID: 23166401
  • Riccio A, Sparago A, Verde G, De Crescenzo A, Citro V, Cubellis MV, Ferrero GB, Silengo MC, Russo S, Larizza L, et al. Inherited and Sporadic Epimutations at the IGF2-H19 locus in Beckwith-Wiedemann syndrome and Wilms’ tumor. Endocr Dev 2009; 14:1 - 9; http://dx.doi.org/10.1159/000207461; PMID: 19293570
  • Huang RC, Galati JC, Burrows S, Beilin LJ, Li X, Pennell CE, van Eekelen J, Mori TA, Adams LA, Craig JM. DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults. Clin Epigenetics 2012; 4:21; http://dx.doi.org/10.1186/1868-7083-4-21; PMID: 23148549
  • Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23:5293 - 300; http://dx.doi.org/10.1128/MCB.23.15.5293-5300.2003; PMID: 12861015
  • Weinhouse C, Anderson OS, Bergin IL, Vandenbergh DJ, Gyekis JP, Dingman MA, Yang J, Dolinoy DC. Dose-Dependent Incidence of Hepatic Tumors in Adult Mice following Perinatal Exposure to Bisphenol A. Environ Health Perspect 2014; http://dx.doi.org/10.1289/ehp.1307449; PMID: 24487385
  • Research IfLA. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press, 1966.
  • Green MR, Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2012.
  • Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 2001; 29:E65 - 5; http://dx.doi.org/10.1093/nar/29.13.e65; PMID: 11433041
  • Druker R, Bruxner TJ, Lehrbach NJ, Whitelaw E. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res 2004; 32:5800 - 8; http://dx.doi.org/10.1093/nar/gkh914; PMID: 15520464
  • Fauque P, Ripoche MA, Tost J, Journot L, Gabory A, Busato F, Le Digarcher A, Mondon F, Gut I, Jouannet P, et al. Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum Mol Genet 2010; 19:1779 - 90; http://dx.doi.org/10.1093/hmg/ddq059; PMID: 20150233
  • Stouder C, Deutsch S, Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod Toxicol 2009; 28:536 - 41; http://dx.doi.org/10.1016/j.reprotox.2009.06.009; PMID: 19549566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.