2,132
Views
65
CrossRef citations to date
0
Altmetric
Review

DNA methylation in endometrial cancer

&
Pages 491-498 | Received 02 Mar 2010, Accepted 21 May 2010, Published online: 16 Aug 2010

References

  • American Cancer Society. Cancer Facts and Figures 2009 2009; www.cancer.org
  • Prat J, Gallardo A, Cuatrecasas M, Catasús L. Endometrial carcinoma: pathology and genetics. Pathology 2007; 39:72 - 87
  • Holliday R. The inheritance of epigenetic defects. Science 1987; 238:163 - 170
  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 1999; 27:2291 - 2298
  • Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 2005; 10:631 - 647
  • Brenner C, Fuks F. DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 2006; 301:45 - 66
  • Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev 1995; 5:309 - 314
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349:2042 - 2054
  • Bird AP. Gene number, noise reduction and biological complexity. Trends Genet 1995; 11:94 - 100
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6:597 - 610
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293:1089 - 1093
  • Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res 2008; 647:30 - 38
  • Heard E, Clerc P, Avner P. X-chromosome inactivation in mammals. Annu Rev Genet 1997; 31:571 - 610
  • Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res 2008; 647:77 - 85
  • Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358:1148 - 1159
  • Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg 2001; 234:10 - 20
  • Wilson AG. Epigenetic regulation of gene expressio in the inflammatory response and relevance to common disease. J Periodontol 2008; 79:1514 - 1519
  • Liu L, van Groen T, Kadish I, Tollefsbol TO. DNA methylation impacts on learning and memory in aging. Neurobiol Aging 2009; 30:549 - 560
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301:89 - 92
  • Kisseljova NP, Kisseljova FL. DNA demethylation and carcinogenesis. Biochemistry 2005; 70:743 - 752
  • Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophs Acta 2007; 1775:138 - 162
  • Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene 2002; 21:5462 - 5482
  • Nieminen TT, Gylling A, Abdel-Rahman WM, Nuorva K, Aarnio M, Renkonen-Sinisalo L, et al. Molecular analysis of endometrial tumorigenesis: importance of complex hyperplasia regardless of atypia. Clin Cancer Res 2009; 15:5772 - 5783
  • Wheeler JMD. Epigenetics, mismatch repair genes and colorectal cancer. Ann R Coll Surg Engl 2005; 87:15 - 20
  • Caduff RF, Johnston CM, Svoboda-Newman SM, Poy EL, Merajver SD, Frank TS. Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol 1996; 148:1671 - 1678
  • Duggan BD, Felix JC, Muderspach LI, Tourgeman D, Zheng J, Shibata D. Microsatellite instability in sporadic endometrial carcinoma. J Natl Cancer Inst 1994; 86:1216 - 1221
  • Gurin CC, Federici MG, Kang L, Boyd J. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res 1999; 59:462 - 466
  • Helland A, Børresen-Dale AL, Peltomäki P, Hektoen M, Kristensen GB, Nesland JM, et al. Microsatellite instability in cervical and endometrial carcinomas. Int J Cancer 1997; 70:499 - 501
  • Kobayashi K, Sagae S, Kudo R, Saito H, Koi S, Nakamura Y. Microsatellite instability in endometrial carcinomas: frequent replication errors in tumors of early onset and/or of poorly differentiated type. Genes Chromosomes Cancer 1995; 14:128 - 132
  • Muresu R, Sini MC, Cossu A, Tore S, Baldinu P, Manca A, et al. Chromosomal abnormalities and microsatellite instability in sporadic endometrial cancer. Eur J Cancer 2002; 38:1802 - 1809
  • Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998; 17:2413 - 2417
  • Katabuchi H, van Rees B, Lambers AR, Ronnett BM, Blazes MS, Leach FS, et al. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res 1995; 155:5556 - 5560
  • Kobayashi K, Matsushima M, Koi S, Saito H, Sagae S, Kudo R, et al. Mutational analysis of mismatch repair genes, hMLH1 and hMSH2, in sporadic endometrial carcinomas with microsatellite instability. Jpn J Cancer Res 1996; 87:141 - 145
  • Lim PC, Tester D, Cliby W, Ziesmer SC, Roche PC, Hartmann L, et al. Absence of mutations in DNA mismatch repair genes in sporadic endometrial tumors with microsatellite instability. Clin Cancer Res 1996; 2:1907 - 1911
  • Staebler A, Lax SF, Ellenson LH. Altered expression of hMLH1 and hMSH2 protein in endometrial carcinomas with microsatellite instability. Hum Pathol 2000; 31:354 - 358
  • Stefansson I, Akslen LA, MacDonald N, Ryan A, Das S, Jacobs IJ, et al. Loss of hMSH2 and hMSH6 expression is frequent in sporadic endometrial carcinomas with microsatellite instability: a population-based study. Clin Cancer Res 2002; 8:138 - 143
  • Baldinu P, Cossu A, Manca A, Satta MP, Pisano M, Casula M, et al. Microsatellite instability and mutation analysis of candidate genes in unselected sardinian patients with endometrial carcinoma. Cancer 2002; 94:3157 - 3168
  • Kondo E, Furukawa T, Yoshinaga K, Kijima H, Semba S, Yatsuoka T, et al. Not hMSH2 but hMLH1 is frequently silenced by hypermethylation in endometrial cancer but rarely silenced in pancreatic cancer with microsatellite instability. Int J Cancer 2000; 17:535 - 541
  • Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997; 57:808 - 811
  • Cunningham JM, Christensen ERTD, Kim CY, Roche PC, Burgart LJ, Thibodeau SN. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998; 58:3455 - 3460
  • Veigl ML, Kasturi L, Olechnowicz J, Ma A, Lutterbaugh JD, Periyasamy S, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc natl Acad Sci USA 1998; 95:8698 - 8702
  • Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999; 59:1090 - 1095
  • Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ, et al. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet 1999; 8:661 - 666
  • Salvesen HB, MacDonald N, ryan A, Iversen OE, Jocobs IJ, akslen LA, et al. Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin Cancer Res 2000; 6:3607 - 3613
  • Zighelboim I, Goodfellow PJ, Gao F, Gibb RK, Powell MA, Rader JS, et al. Microsatellite instability and epigenetic inactivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J Clin Oncol 2007; 25:2042 - 2048
  • Herman JG, Uma A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 1998; 95:6870 - 6875
  • Esteller M, Catasus L, Matias-Guiu X, Mutter GL, Prat J, Baylin SB, et al. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 1999; 155:1767 - 1772
  • Horowitz N, Pinto K, Mutch DG, Herzog TJ, Rader JS, Gibb R, et al. Microsatellite instability, MLH1 promoter methylation, and loss of mismatch repair in endometrial cancer and concomitant atypical hyperplasia. Gynecol Oncol 2002; 86:62 - 68
  • Kanaya T, Kyo S, Sakaguchi J, Maida Y, Nakamura M, Takakura M, et al. Association of mismatch repair deficiency with PTEN frameshift mutations in endometrial cancers and the precursors in a Japanese population. Am J Clin Pathol 2005; 124:89 - 96
  • Banno K, Yanokura M, Susumu N, Kawaguchi M, Hirao N, Hirasawa A, et al. Relationship of the aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer. Oncol Rep 2006; 16:1189 - 1196
  • Guida M, Sanguedolce F, Bufo P, Di Spiezio Sardo A, Bifulco G, Nappi C, et al. Aberrant DNA hypermethylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions. Eur J Gynaecol Oncol 2009; 30:267 - 270
  • Piva R, Kumar VL, Hanau S, Rimondi AP, Pansini S, Mollica G, et al. Abnormal methylation of estrogen receptor gene and reduced estrogen receptor RNA levels in human endometrial carcinomas. J Steroid Biochem 1989; 32:1 - 4
  • Sasaki M, Kotcherguina L, Dharia A, Fujimoto S, Dahiya R. Cytosine-phosphoguanine methylation of estrogen receptors in endometrial cancer. Cancer Res 2001; 61:3262 - 3266
  • Hori M, Iwasaki M, Shimazaki J, Inagawa S, Itabashi M. Assessment of hypermethylated DNA in two promoter regions of the estrogen receptor alpha gene in human endometrial diseases. Gynecol Oncol 2000; 76:89 - 96
  • Navari JR, Roland PY, Keh P, Salvesen HB, Akslen LA, Iversen OE, et al. Loss of estrogen receptor (ER) expression in endometrial tumors is not associated with de novo methylation of the 5′ end of the ER gene. Clin Cancer Res 2000; 6:4026 - 4032
  • Shiozawa T, Itoh K, Horiuchi A, Konishi I, Fujii S, Nikaido T. Downregulation of estrogen receptor by the methylation of the estrogen receptor gene in endometrial carcinoma. Anticancer Res 2002; 22:139 - 143
  • Maeda K, Tsuda H, Hashiguchi Y, Yamamoto K, Inoue T, Ishiko O, et al. Relationship between p53 pathway and estrogen receptor status in endometrioid-type endometrial cancer. Hum Pathol 2002; 33:386 - 391
  • Sasaki M, Kaneuchi M, Fujimoto S, Tanaka Y, Dahiya R. Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers. Mol Cell Endocrinol 2003; 202:201 - 207
  • Kumar NS, Richer J, Owen G, Litman E, Horwitz KB, Leslie KK. Selective downregulation of progesterone receptor isoform B in poorly differentiated human endometrial cancer cells: implications for unopposed estrogen action. Cancer Res 1998; 58:1860 - 1865
  • Sasaki M, Dharia A, Oh BR, Tanaka Y, Fujimoto S, Dahiya R. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res 2001; 61:97 - 102
  • Dai D, Wolf DM, Litman ES, White MJ, Leslie KK. Progesterone inhibits human endometrial cancer cell growth and invasiveness: downregulation of cellular adhesion molecules through progesterone B receptors. Cancer Res 2002; 62:881 - 886
  • Xiong Y, Dowdy SC, Gonzalez Bosquet J, Zhao Y, Eberhardt NL, Podratz KC, et al. Epigenetic-mediated upregulation of progesterone receptor B gene in endometrial cancer cell lines. Gynecol Oncol 2005; 99:135 - 141
  • Ren Y, Liu X, Ma D, Feng Y, Zhong N. Downregulation of the progesterone receptor by the methylation of progesterone receptor gene in endometrial cancer cells. Cancer Genet Cytogenet 2007; 175:107 - 116
  • Nelen MR, Padberg GW, Peeters EA, Lin AY, van den Helm B, Frants RR, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet 1996; 13:114 - 116
  • Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, et al. Germ-line mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997; 16:333 - 334
  • Waite KA, Eng C. Protean PTEN: Form and Function. Am J Hum Genet 2002; 70:829 - 844
  • Tashiro H, Blazes MS, Wu R, Cho KR, Bose S, Wang SI, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997; 27:3935 - 3940
  • Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 2000; 92:924 - 930
  • Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res 2004; 64:3014 - 3021
  • Macdonald ND, Salvesen HB, Ryan A, Malatos S, Stefansson I, Iversen OE, et al. Molecular differences between RER+ and RER− sporadic endometrial carcinomas in a large population-based series. Int J Gynecol Cancer 2004; 14:957 - 965
  • Salvesen HB, Stefansson I, Kretzschmar EI, Gruber P, MacDonald ND, Ryan A, et al. Significance of PTEN alterations in endometrial carcinoma: a population-based study of mutations, promoter methylation and PTEN protein expression. Int J Oncol 2004; 25
  • Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, et al. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 2001; 91:22 - 26
  • Zysman MA, Chapman WB, Bapat B. Considerations when analyzing the methylation status of PTEN tumor suppressor gene. Am J Pathol 2002; 160:795 - 800
  • Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998; 16:1197 - 1206
  • Wong YF, Chung TK, Cheung TH, Nobori T, Yu AL, Yu J, et al. Methylation of p16INK4A in primary gynecologic malignancy. Cancer Lett 1999; 136:231 - 235
  • Ignatov A, Bischoff J, Schwarzenau C, Krebs T, Kuester D, Herrmann K, et al. p16 alterations increase the metastatic potential of endometrial carcinoma. Gynecol Oncol 2008; 111:365 - 371
  • Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C, et al. The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res 2006; 12:3329 - 3336
  • Yang HJ, Liu VW, Wang Y, Tsang PC, Ngan HY. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 2006; 23:212
  • Nakashima R, Fujita M, Enomoto T, Haba T, Yoshino K, Wada H, et al. Alteration of p16 and p15 genes in human uterine tumours. Br J Cancer 1999; 80:458 - 467
  • Salesen HB, Das S, Akslen LA. Loss of nuclear p16 protein expression is not associated with promoter methylation but defines a subgroup of aggressive endometrial carcinomas with poor prognosis. Clin Cancer Res 2000; 153 - 159
  • Semczuk A, Boltze C, Marzec B, Szczygielska A, Roessner A, Schneider-Stock R. p16INK4A alterations are accompanied by aberrant protein immunostaining in endometrial carcinomas. J Cancer Res Clin Oncol 2003; 129:589 - 596
  • Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 2005; 65:3497 - 3508
  • Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci 2007; 120:3163 - 3172
  • Arafa M, Kridelka F, Mathias V, Vanbellinghen JF, Renard I, Foidart JM, et al. High frequency of RASSF1A and RARb2 gene promoter methylation in morphologically normal endometrium adjacent to endometrioid adenocarcinoma. Histopathology 2008; 53:525 - 532
  • Pallarés J, Velasco A, Eritja N, Santacana M, Dolcet X, Cuatrecasas M, et al. Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod Pathol 2008; 21:691 - 699
  • Liao X, Siu MK, Chan KY, Wong ES, Ngan HY, Chan QK, et al. Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis. Int J Cancer 2008; 123:296 - 302
  • Pijnenborg JM, Dam-de Veen GC, Kisters N, Delvoux B, van Engeland M, Herman JG, et al. RASSF1A methylation and K-ras and B-raf mutations and recurrent endometrial cancer. Ann Oncol 2007; 18:491 - 497
  • Jo H, Kim JW, Kang GH, Park NH, Song YS, Kang SB, et al. Association of promoter hypermethylation of the RASSF1A gene with prognostic parameters in endometrial cancer. Oncol Res 2006; 16:205 - 209
  • Kang S, Lee JM, Jeon ES, Lee S, Kim H, Kim HS, et al. RASSF1A hypermethylation and its inverse correlation with BRAF and/or KRAS mutations in MSI-associated endometrial carcinoma. Int J Cancer 2006; 119:1316 - 1321
  • Joensuu EI, Abdel-Rahman WM, Ollikainen M, Ruosaari S, Knuutila S, Peltomäki P. Epigenetic signatures of familial cancer are characteristic of tumor type and family category. Cancer Res 2008; 68:4597 - 4605
  • Yu MY, Tong JH, Chan PK, Lee TL, Chan MW, Chan AW, et al. Hypermethylation of the tumor suppressor gene RASSFIA and frequent concomitant loss of heterozygosity at 3p21 in cervical cancers. Int J Cancer 2003; 105:204 - 209
  • Jones MH, Nakamura Y, Koi S, Fujimoto L, Hasumi K, Kato K. Allelotype of uterine cancer by analysis of RFLP and microsatellite polymorphisms: Frequent loss of heterozygosity on chromosome arms 3p, 9q, 10q and 17p. Genes Chromosomes Cancer 1994; 9:119 - 123
  • Kang S, Kim JW, Kang GH, Lee S, Park NH, Song YS, et al. Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer 2006; 118:2168 - 2171
  • Fodde R. The APC gene in colorectal cancer. Eur J Cancer 2002; 38:867 - 871
  • Barker N, Clevers H. Catenins, Wnt signaling and cancer. Bioessays 2000; 22:961 - 965
  • Schlosshauer PW, Pirog EC, Levine RL, Ellenson LH. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma. Mod Pathol 2000; 13:1066 - 1071
  • Kobayashi K, Sagae S, Nishioka Y, Tokino T, Kudo R. Mutations of the beta-catenin gene in endometrial carcinomas. Jpn J Cancer Res 1999; 90:55 - 59
  • Moreno-Bueno G, Hardisson D, Sánchez C, Sarrió D, Cassia R, García-Rostán G, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene 2002; 21:7981 - 7990
  • Pijnenborg JM, Kisters N, van Engeland M, Dunselman GA, de Haan J, de Goeij AF, et al. APC, beta-catenin and E-cadherin and the development of recurrent endometrial carcinoma. Int J Gynecol Cancer 2004; 14:947 - 956
  • Zysman M, Saka A, Millar A, Knight J, Chapman W, Bapat B. Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype. Cancer Res 2002; 62:3663 - 3666
  • Suehiro Y, Okada T, Okada T, Anno K, Okayama N, Ueno K, et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin Cancer Res 2008; 14:3354 - 3361
  • Ilyas M, Tomlinson IPM. The interatcions of APC, E-cadherin and β-catenin in tumor development and progression. J Pathol 1997; 182:128 - 137
  • Moreno-Bueno G, Hardisson D, Sarrió D, Sánchez C, Cassia R, Prat J, et al. Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol 2003; 199:471 - 478
  • Saito T, Nishimura M, Yamasaki H, Kudo R. Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer 2003; 97:1002 - 1009
  • Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999; 59:793 - 797
  • Li R, Saito T, Tanaka R, Satohisa S, Adachi K, Horie M, et al. Hypermethylation in promoter region of retinoic acid receptor-beta gene and immunohistochemical findings on retinoic acid receptors in carcinogenesis of endometrium. Cancer Lett 2005; 219:33 - 40
  • Mhawech P, Benz A, Cerato C, Greloz V, Assaly M, Desmond JC, et al. Downregulation of 14-3-3sigma in ovary, prostate and endometrial carcinomas is associated with CpG island methylation. Mod Pathol 2005; 18:340 - 348
  • Dowdy SC, Gostout BS, Shridhar V, Wu X, Smith DI, Podratz KC, et al. Biallelic methylation and silencing of paternally expressed gene 3 (PEG3) in gynecologic cancer cell lines. Gynecol Oncol 2005; 99:126 - 134
  • Chan QK, Khoo US, Chan KY, Ngan HY, Li SS, Chiu PM, et al. Promoter methylation and differential expression of pi-class glutathione S-transferase in endometrial carcinoma. J Mol Diagn 2005; 7:8 - 16
  • Yamaguchi S, Asanoma K, Takao T, Kato K, Wake N. Homeobox gene HOPX is epigenetically silenced in human uterine endometrial cancer and suppresses estrogen-stimulated proliferation of cancer cells by inhibiting serum response factor. Int J Cancer 2009; 124:2577 - 2588
  • Yoshida H, Broaddus R, Cheng W, Xie S, Naora H. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Res 2006; 66:889 - 897
  • Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, Goodfellow PJ. Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 2003; 9:2277 - 2287
  • Yoshizaki T, Enomoto T, Fujita M, Ueda Y, Miyatake T, Fujiwara K, et al. Frequent inactivation of RUNX3 in endometrial carcinoma. Gynecol Oncol 2008; 110:439 - 444
  • Tse KY, Liu VW, Chan DW, Chiu PM, Tam KF, Chan KK, et al. Epigenetic alteration of the metallothionein 1E gene in human endometrial carcinomas. Tumour Biol 2009; 30:93 - 99
  • Risinger JI, Maxwell GL, Berchuck A, Barrett JC. Promoter hypermethylation as an epigenetic component in Type I and Type II endometrial cancers. Ann N Y Acad Sci 2003; 983:208 - 212
  • Reid-Nicholson M, Iyengar P, Hummer AJ, Linkov I, Asher M, Soslow RA. Immunophenotypic diversity of endometrial adenocarcinomas: implications for differential diagnosis. Mod Pathol 2006; 19:1091 - 1100
  • Xiong Y, Dowdy SC, Xue A, Shujuan J, Eberhardt NL, Podratz KC, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers. Gynecol Oncol 2005; 96:601 - 609
  • Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of enironmental and dietary factors. Mutagenesis 2007; 22:91 - 103
  • Mason JB. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 2003; 133:941 - 947
  • Choi SW, Mason JB. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 2002; 132:2413 - 2418
  • Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 2005; 135:2703 - 2709
  • Mason JB, Choi SW, Liu Z. Other one-carbon micro-nutrients and age modulate the effects of folate on colorectal carcinogenesis. Nutr Rev 2008; 66:15 - 17
  • Thompson J. Vitamins and minerals 4: overview of folate and the B vitamins. Community Pract 2006; 79:197 - 198
  • Pufulete M, Emery PW, Sanders TA. Folate, DNA methylation and colo-rectal cancer. Proc Nutr Soc 2003; 62:437 - 445
  • Kim YI, Pogribny IP, Basnakian AG, Miller JW, Selhub J, James SJ, et al. Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr 1997; 65:46 - 52
  • Pogribny IP, James SJ. De novo methylation of the p16INK4A gene in early preneoplastic liver and tumors induced by folate/methyl deficiency in rats. Cancer Lett 2002; 187:69 - 75
  • de Vogel S, Bongaerts BW, Wouters KA, Kester AD, Schouten LJ, de Goeij AF, et al. Associations of dietary methyl donor intake with MLH1 promoter hypermethylation and related molecular phenotypes in sporadic colorectal cancer. Carcinogenesis 2008; 29:1765 - 1773
  • Kraunz KS, Hsiung D, McClean MD, Liu M, Osanyingbemi JO, Nelson HH, et al. Dietary folate is associated with p16INK4A methylation in head and neck squamous cell carcinoma. Int J Cancer 2006; 119:1553 - 1557
  • Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, et al. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer 2006; 120:656 - 663
  • van Engeland M, Weijenberg MP, Roemen GM, Brink M, de Bruïne AP, Goldbohm RA, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 2003; 63:3133 - 3137
  • Zhu K, Davidson NE, Hunter S, Yang X, Payne-Wilks K, Roland CL, et al. Methyl-group dietary intake and risk of breast cancer among African-American women: a case-control study by methylation status of the estrogen receptor alpha genes. Cancer Causes Control 2003; 14:827 - 836
  • Li Y, Upadhyay S, Bhuiyan M, Sarkar FH. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 1999; 18:3166 - 3172
  • Wietrzyk J, Boratynski J, Grynkiewicz G, Ryczynski A, Radzikowski C, Opolski A. Antiangiogenic and antitumour effects in vivo of genistein applied alone or combined with cyclophosphamide. Anticancer Res 2001; 21:3893 - 3896
  • Adlercreutz H. Phyto-oestrogens and cancer. Lancet Oncol 2002; 3:364 - 373
  • Price KR, Fenwick GR. Naturally occurring oestrogens in foods-a review. Food Addit Contam 1985; 2:73 - 106
  • Day JK, Bauer AM, DesBordes C, Zhuang Y, Kim BE, Newton LG, et al. Genistein alters methylation patterns in mice. J Nutr 2002; 132:2419 - 2423
  • Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta and MGMT genes by genistein and ther isoflavones from soy. Clin Cancer Res 2005; 11:7034 - 7041
  • Cui Y, Lu C, Liu L, Sun D, Yao N, Tan S, et al. Reactivation of methylation-silenced tumor suppressor gene p16INK4a by nordihydroguaiaretic acid and its implication in G1 cell cycle arrest. Life Sci 2008; 82:247 - 255
  • King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 2008; 49:36 - 45
  • Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 2009; 30:662 - 670
  • Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, et al. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer 2009; 61:238 - 244
  • Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM. Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomarkers Prev 2007; 16:192 - 196
  • Vessey MP, Painter R. Endometrial and ovarian cancer and oral contraceptives-findings in a large cohort study. Br J Cancer 1995; 71:1340 - 1342
  • Tao MH, Xu WH, Zheng W, Zhang ZF, Gao YT, Ruan ZX, et al. Oral contraceptive and IUD use and endometrial cancer: a population-based case-control study in Shanghai, China. Int J Cancer 2006; 119:2142 - 2147
  • Maxwell GL, Schildkraut JM, Calingaert B, Risinger JI, Dainty L, Marchbanks PA, et al. Progestin and estrogen potency of combination oral contraceptives and endometrial cancer risk. Gynecol Oncol 2006; 103:535 - 540
  • Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: downregulation by progesterone and estrogen. Hum Reprod 2009; 24:1126 - 1132
  • Foley DL, Craig JM, Morley R, Olsson CJ, Dwyer T, Smith K, et al. Prospects for epigenetic epidemiology. Am J Epidemiol 2009; 169:389 - 400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.