8,633
Views
161
CrossRef citations to date
0
Altmetric
Review

Basic concepts of epigenetics

Impact of environmental signals on gene expression

&
Pages 119-130 | Received 05 Sep 2011, Accepted 14 Nov 2011, Published online: 01 Feb 2012

References

  • Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008; 410:9 - 17; PMID: 18226475; http://dx.doi.org/10.1016/j.gene.2007.12.008
  • Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10:691 - 703; PMID: 19763152; http://dx.doi.org/10.1038/nrg2640
  • Wade PA, Archer TK. Epigenetics: environmental instructions for the genome. Environ Health Perspect 2006; 114:140 - 141; PMID: 16507439; http://dx.doi.org/10.1289/ehp.114-a140
  • Martínez-Frías ML. Can our understanding of epigenetics assist with primary prevention of congenital defects?. J Med Genet 2010; 47:73 - 80; PMID: 19755430; http://dx.doi.org/10.1136/jmg.2009.070466
  • Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330:612 - 616; PMID: 21030644; http://dx.doi.org/10.1126/science.1191078
  • Kuzawa CW, Sweet E. Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health. Am J Hum Biol 2009; 21:2 - 15; PMID: 18925573; http://dx.doi.org/10.1002/ajhb.20822
  • Thaye ZM, Kuzawa CW. Biological memories of past environments: epigenetic pathways to health disparities. Epigenetics 2011; 6:798 - 803; PMID: 21597338; http://dx.doi.org/10.4161/epi.6.7.16222
  • Lu MC, Kotelchuck M, Hogan V, Jones L, Wright K, Halfon N. Closing the Black-White gap in birth outcomes: a life-course approach. Ethn Dis 2010; 20:62 - 76; PMID: 20629248
  • Dailey DE. Social stressors and strengths as predictors of infant birth weight in low-income African American women. Nurs Res 2009; 58:340 - 347; PMID: 19752674; http://dx.doi.org/10.1097/NNR.0b013e3181ac1599
  • Brooks PE. Ethnographic evaluation of a research partnership between two African American communities and a university. Ethn Dis 2010; 20:21 - 29; PMID: 20629243
  • Heijmans BT, Tobi EW, Lumey LH, Slagboom PE. The epigenome: archive of the prenatal environment. Epigenetics 2009; 4:526 - 531; PMID: 19923908; http://dx.doi.org/10.4161/epi.4.8.10265
  • Gong L, Pan YX, Chen H. Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics 2010; 5:619 - 626; PMID: 20671425
  • Fryer AA, Nafee TM, Ismail KM, Carroll WD, Emes RD, Farrell WE. LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study. Epigenetics 2009; 4:394 - 398; PMID: 19755846; http://dx.doi.org/10.4161/epi.4.6.9766
  • Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 2009; 23:2438 - 2449; PMID: 19364764; http://dx.doi.org/10.1096/fj.08-124768
  • Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol 2009; 62:78 - 89; PMID: 19614624; http://dx.doi.org/10.1111/j.16000897.2009.00716.x
  • Chan D, Cushnie DW, Neaga OR, Lawrance AK, Rozen R, Trasler JM. Strain-specific defects in testicular development and sperm epigenetic patterns in 5,10-methylenetetrahydrofolate reductase-deficient mice. Endocrinology 2010; 151:3363 - 3373; PMID: 20444942; http://dx.doi.org/10.1210/en.20091340
  • Coppedè F. One-carbon metabolism and Alzheimer's disease: focus on epigenetics. Curr Genomics 2010; 11:246 - 260; PMID: 21119889; http://dx.doi.org/10.2174/138920210791233090
  • Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 2011; 70:47 - 56; PMID: 21067630; http://dx.doi.org/10.1017/S0029665110003952
  • de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, de Goeij AF, de Bruïne AP, et al. Dietary methyl donors, methyl metabolizing enzymes and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 2011; 22:1 - 12; PMID: 20960050; http://dx.doi.org/10.1007/s10552-010-9659-6
  • Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12:949 - 957; PMID: 9707167
  • Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 2009; 89:1488 - 1493; PMID: 19261726; http://dx.doi.org/10.3945/ajcn.2009.27113B
  • Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J 2010; 24:184 - 195; PMID: 19752176; http://dx.doi.org/10.1096/fj.09140145
  • Davison JM, Mellott TJ, Kovacheva VP, Blusztajn JK. Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39 h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. J Biol Chem 2009; 284:1982 - 1989; PMID: 19001366; http://dx.doi.org/10.1074/jbc.M807651200
  • James SJ, Melnyk S, Jernigan S, Pavliv O, Trusty T, Lehman S, et al. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. Am J Med Genet B Neuropsychiatr Genet 2010; 153:1209 - 1220; PMID: 20468076
  • Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci 2009; 66:596 - 612; PMID: 18985277; http://dx.doi.org/10.1007/s00018-008-8432-4
  • Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C, et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 1996; 18:49 - 72; PMID: 8840086; http://dx.doi.org/10.1159/000111395
  • Skinner MK, Guerrero-Bosagna C. Environmental signals and transgenerational epigenetics. Epigenomics 2009; 1:111 - 117; PMID: 20563319; http://dx.doi.org/10.2217/epi.09.11
  • Titus-Ernstoff L, Troisi R, Hatch EE, Hyer M, Wise LA, Palmer JR, et al. Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology 2008; 19:251 - 257; PMID: 18223485; http://dx.doi.org/10.1097/EDE.0b013e318163152a
  • Weinhold B. Epigenetics: the science of change. Environ Health Perspect 2006; 114:160 - 167; PMID: 16507447; http://dx.doi.org/10.1289/ehp.114-a160
  • Tal O, Kisdi E, Jablonka E. Epigenetic contribution to covariance between relatives. Genetics 2010; 184:1037 - 1050; PMID: 20100941; http://dx.doi.org/10.1534/genetics.109.112466
  • Lim SJ, Tan TW, Tong JC. Computational Epigenetics: the new scientific paradigm. Bioinformation 2010; 4:331 - 337; PMID: 20978607
  • Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene 2001; 278:25 - 31; PMID: 11707319; http://dx.doi.org/10.1016/S03781119(01)00721-1
  • Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 2006; 26:169 - 181; PMID: 16354688; http://dx.doi.org/10.1128/MCB.26.1.169-81.2006
  • Sasai N, Nakao M, Defossez PA. Sequence-specific recognition of methylated DNA by human zinc-finger proteins. Nucleic Acids Res 2010; 38:5015 - 5022; PMID: 20403812; http://dx.doi.org/10.1093/nar/gkq280
  • Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet 2010; 70:101 - 141; PMID: 20920747; http://dx.doi.org/10.1016/B978-012-380866-0.60005-8
  • Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, et al. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 2010; 17:4052 - 4071; PMID: 20939822; http://dx.doi.org/10.2174/092986710793205372
  • Tittle RK, Sze R, Ng A, Nuckels RJ, Swartz ME, Anderson RM, et al. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 2011; 350:50 - 63; PMID: 21126517; http://dx.doi.org/10.1016/j.ydbio.2010.11.009
  • Unoki M. Current and potential anticancer drugs targeting members of the UHRF1 complex including epigenetic modifiers. Recent Pat Anticancer Drug Discov 2011; 6:116 - 130; PMID: 21110828; http://dx.doi.org/10.2174/157489211793980024
  • Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S, et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3:80; PMID: 21045206; http://dx.doi.org/10.1126/scisignal.2001462
  • Bronner C. Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation and the histone code. Sci Signal 2011; 4:3; PMID: 21266713; http://dx.doi.org/10.1126/scisignal.2001764
  • Kessler BM, Fortunati E, Melis M, Pals CE, Clevers H, Maurice MM. Proteome changes induced by knockdown of the deubiquitylating enzyme HAUSP/USP7. J Proteome Res 2007; 6:4163 - 4172; PMID: 17927229; http://dx.doi.org/10.1021/pr0702161
  • Jeong S, Liang G, Sharma S, Lin JC, Choi SH, Han H, et al. Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 2009; 29:5366 - 5376; PMID: 19620278; http://dx.doi.org/10.1128/MCB.00484-09
  • Siomi MC, Tsukumo H, Ishizuka A, Nagami T, Siomi H. A potential link between transgene silencing and poly(A) tails. RNA 2005; 11:1004 - 1011; PMID: 15987811; http://dx.doi.org/10.1261/rna.2280105
  • Handel AE, Ebers GC, Ramagopalan SV. Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med 2010; 16:7 - 16; PMID: 20022812; http://dx.doi.org/10.1016/j.molmed.2009.11.003
  • Roloff TC, Ropers HH, Nuber UA. Comparative study of methyl-CpG-binding domain proteins. BMC Genomics 2003; 4:1; PMID: 12529184; http://dx.doi.org/10.1186/1471-2164-4-1
  • Fatemi M, Wade PA. MBD family proteins: reading the epigenetic code. J Cell Sci 2006; 119:3033 - 3037; PMID: 16868031; http://dx.doi.org/10.1242/jcs.03099
  • Katryniok C, Schnur N, Gillis A, von Knethen A, Sorg BL, Looijenga L, et al. Role of DNA methylation and methyl-DNA binding proteins in the repression of 5-lipoxygenase promoter activity. Biochim Biophys Acta 2010; 1801:49 - 57; PMID: 19781662
  • Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem 2001; 268:1 - 6; PMID: 11121095; http://dx.doi.org/10.1046/j.1432-327.2001.01869.x
  • Uchimura Y, Ichimura T, Uwada J, Tachibana T, Sugahara S, Nakao M, et al. Involvement of SUMO modification in MBD1- and MCAF1-mediated heterochromatin formation. J Biol Chem 2006; 281:23180 - 23190; PMID: 16757475; http://dx.doi.org/10.1074/jbc.M602280200
  • Ichimura T, Watanabe S, Sakamoto Y, Aoto T, Fujita N, Nakao M. Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins. J Biol Chem 2005; 280:13928 - 13935; PMID: 15691849; http://dx.doi.org/10.1074/jbc.M413654200
  • Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M, et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39 h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 2003; 278:24132 - 24138; PMID: 12711603; http://dx.doi.org/10.1074/jbc.M302283200
  • Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 2004; 15:595 - 605; PMID: 15327775; http://dx.doi.org/10.1016/j.molcel.2004.06.043
  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 1999; 23:62 - 66; PMID: 10471500; http://dx.doi.org/10.1038/12664
  • Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 2008; 16:1077 - 1085; PMID: 18571423; http://dx.doi.org/10.1016/j.str.2008.05.006
  • Guarda A, Bolognese F, Bonapace IM, Badaracco G. Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2. Exp Cell Res 2009; 315:1895 - 1903; PMID: 19331822; http://dx.doi.org/10.1016/j.yexcr.2009.01.019
  • Kaludov NK, Wolffe AP. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res 2000; 28:1921 - 1928; PMID: 10756192; http://dx.doi.org/10.1093/nar/28.9.1921
  • Martins RP, Krawetz SA. Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix. Gene Ther Mol Biol 2005; 9:229 - 246; PMID: 21243045
  • McDonel P, Costello I, Hendrich B. Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development. Int J Biochem Cell Biol 2009; 41:108 - 116; PMID: 18775506; http://dx.doi.org/10.1016/j.biocel.2008.07.022
  • Rottmann S, Speckgens S, Lüscher-Firzlaff J, Lüscher B. Inhibition of apoptosis by MAD1 is mediated by repression of the PTEN tumor suppressor gene. FASEB J 2008; 22:1124 - 1134; PMID: 17998413; http://dx.doi.org/10.1096/fj.07-9627com
  • Wahlström T, Henriksson M. Mnt takes control as key regulator of the myc/max/mxd network. Adv Cancer Res 2007; 97:61 - 80; PMID: 17419941; http://dx.doi.org/10.1016/S0065-230X(06)97003-1
  • Rottmann S, Menkel AR, Bouchard C, Mertsching J, Loidl P, Kremmer E, et al. Mad1 function in cell proliferation and transcriptional repression is antagonized by cyclin E/CDK2. J Biol Chem 2005; 280:15489 - 15492; PMID: 15722557; http://dx.doi.org/10.1074/jbc.C400611200
  • Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, et al. Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn 2006; 235:792 - 801; PMID: 16408284; http://dx.doi.org/10.1002/dvdy.20671
  • McCallum SA, Bazan JF, Merchant M, Yin J, Pan B, de Sauvage FJ, et al. Structure of SAP18: a ubiquitin fold in histone deacetylase complex assembly. Biochemistry 2006; 45:11974 - 11982; PMID: 17002296; http://dx.doi.org/10.1021/bi060687l
  • Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1997; 1:300 - 308; PMID: 9667866; http://dx.doi.org/10.1016/S13675931(97)80066-X
  • Davie JR. Covalent modifications of histones: expression from chromatin templates. Curr Opin Genet Dev 1998; 8:173 - 178; PMID: 9610407; http://dx.doi.org/10.1016/S0959-437X(98)80138-X
  • Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, et al. An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription corepressors mSin3A/B. Biochem J 2003; 369:651 - 657; PMID: 12398767; http://dx.doi.org/10.1042/BJ20020854
  • Bártová E, Horáková AH, Uhlírová R, Raska I, Galiová G, Orlova D, et al. Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 2010; 58:391 - 403; PMID: 20026667; http://dx.doi.org/10.1369/jhc.2009.955435
  • Santoro R, Li J, Grummt I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 2002; 32:393 - 396; PMID: 12368916; http://dx.doi.org/10.1038/ng1010
  • Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 1999; 13:1529 - 1539; PMID: 10385622; http://dx.doi.org/10.1101/gad.13.12.1529
  • Pile LA, Schlag EM, Wassarman DA. The SIN3/RPD3 deacetylase complex is essential for G(2) phase cell cycle progression and regulation of SMRTER corepressor levels. Mol Cell Biol 2002; 22:4965 - 4976; PMID: 12077326; http://dx.doi.org/10.1128/MCB.22.14.4965-76.2002
  • Laget S, Joulie M, Le Masson F, Sasai N, Christians E, Pradhan S, et al. The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. PLoS One 2010; 5:11982; PMID: 20700456; http://dx.doi.org/10.1371/journal.pone.0011982
  • Doerks T, Copley R, Bork P. DDT—a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci 2001; 26:145 - 146; PMID: 11246006; http://dx.doi.org/10.1016/S09680004(00)01769-2
  • Zhou Y, Grummt I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 2005; 15:1434 - 1438; PMID: 16085498; http://dx.doi.org/10.1016/j.cub.2005.06.057
  • Hung MS, Shen CK. Eukaryotic methyl-CpG-binding domain proteins and chromatin modification. Eukaryot Cell 2003; 2:841 - 846; PMID: 14555466; http://dx.doi.org/10.1128/EC.2.5.841-6.2003
  • Falandry C, Fourel G, Galy V, Ristriani T, Horard B, Bensimon E, et al. CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J Biol Chem 2010; 285:20234 - 20241; PMID: 20404330; http://dx.doi.org/10.1074/jbc.M109.052399
  • Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L, et al. Cloning and characterization of CLLD6, CLLD7 and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res 2001; 61:2870 - 2877; PMID: 11306461
  • Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung AY, Elliott S, et al. MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS One 2009; 4:6810; PMID: 19710912; http://dx.doi.org/10.1371/journal.pone.0006810
  • Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, et al. The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet 2008; 17:2047 - 2057; PMID: 18385101; http://dx.doi.org/10.1093/hmg/ddn102
  • Li X, Barkho BZ, Luo Y, Smrt RD, Santistevan NJ, Liu C, et al. Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem 2008; 283:27644 - 27652; PMID: 18689796; http://dx.doi.org/10.1074/jbc.M804899200
  • Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 2009; 89:67 - 84; PMID: 19900616; http://dx.doi.org/10.1016/S0074-7742(09)89004-1
  • Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. Epigenetics, disease and therapeutic interventions. Ageing Res Rev 2006; 5:449 - 467; PMID: 16965942; http://dx.doi.org/10.1016/j.arr.2006.07.001
  • Williams SR, Mullegama SV, Rosenfeld JA, Dagli AI, Hatchwell E, Allen WP, et al. Haploinsufficiency of MBD5 associated with a syndrome involving microcephaly, intellectual disabilities, severe speech impairment and seizures. Eur J Hum Genet 2010; 18:436 - 441; PMID: 19904302; http://dx.doi.org/10.1038/ejhg.2009.199
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251 - 260; PMID: 9305837; http://dx.doi.org/10.1038/38444
  • Bentley GA, Lewit-Bentley A, Finch JT, Podjarny AD, Roth M. Crystal structure of the nucleosome core particle at 16 A resolution. J Mol Biol 1984; 176:55 - 75; PMID: 6737479; http://dx.doi.org/10.1016/00222836(84)90382-6
  • Hashimoto H, Vertino PM, Cheng X. Molecular coupling of DNA methylation and histone methylation. Epigenomics 2010; 2:657 - 669; PMID: 21339843; http://dx.doi.org/10.2217/epi.10.44
  • Villar-Garea A, Israel L, Imhof A. Analysis of histone modifications by mass spectrometry. Current protocols in protein science/editorial board, Coligan JE, et al 2008; 14:14
  • Filenko NA, Kolar C, West JT, Smith SA, Hassan YI, Borgstahl GE, et al. The role of histone H4 biotinylation in the structure of nucleosomes. PLoS One 2011; 6:16299; PMID: 21298003; http://dx.doi.org/10.1371/journal.pone.0016299
  • Metzler-Guillemain C, Depetris D, Luciani JJ, Mignon-Ravix C, Mitchell MJ, Mattei MG. In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosome Res 2008; 16:761 - 782; PMID: 18592385; http://dx.doi.org/10.1007/s10577-008-1225-7
  • Wyrick JJ, Parra MA. The role of histone H2A and H2B post-translational modifications in transcription: a genomic perspective. Biochim Biophys Acta 2009; 1789:37 - 44; PMID: 18675384
  • Conerly ML, Teves SS, Diolaiti D, Ulrich M, Eisenman RN, Henikoff S. Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis. Genome Res 2010; 20:1383 - 1390; PMID: 20709945; http://dx.doi.org/10.1101/gr.106542.110
  • Cairns BR. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 2007; 14:989 - 996; PMID: 17984961; http://dx.doi.org/10.1038/nsmb1333
  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 2005; 123:233 - 248; PMID: 16239142; http://dx.doi.org/10.1016/j.cell.2005.10.002
  • Kim JH, Saraf A, Florens L, Washburn M, Workman JL. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 2010; 24:2766 - 2771; PMID: 21159817; http://dx.doi.org/10.1101/gad.1979710
  • Tolstorukov MY, Kharchenko PV, Goldman JA, Kingston RE, Park PJ. Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome Res 2009; 19:967 - 977; PMID: 19246569; http://dx.doi.org/10.1101/gr.084830.108
  • Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 2007; 27:6457 - 6468; PMID: 17636032; http://dx.doi.org/10.1128/MCB.00241-07
  • Subtil-Rodríguez A, Reyes JC. BRG1 helps RNA polymerase II to overcome a nucleosomal barrier during elongation, in vivo. EMBO Rep 2010; 11:751 - 757; PMID: 20829883; http://dx.doi.org/10.1038/embor.2010.131
  • Altaf M, Auger A, Monnet-Saksouk J, Brodeur J, Piquet S, Cramet M, et al. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem 2010; 285:15966 - 15977; PMID: 20332092; http://dx.doi.org/10.1074/jbc.M110.117069
  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 2004; 306:2084 - 2087; PMID: 15528408; http://dx.doi.org/10.1126/science.1103455
  • Gévry N, Chan HM, Laflamme L, Livingston DM, Gaudreau L. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev 2007; 21:1869 - 1881; PMID: 17671089; http://dx.doi.org/10.1101/gad.1545707
  • Wong MM, Cox LK, Chrivia JC. The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 2007; 282:26132 - 26139; PMID: 17617668; http://dx.doi.org/10.1074/jbc.M703418200
  • Keppler BR, Archer TK. Ubiquitin-dependent and ubiquitin-independent control of subunit stoichiometry in the SWI/SNF complex. J Biol Chem 2010; 285:35665 - 35674; PMID: 20829358; http://dx.doi.org/10.1074/jbc.M110.173997
  • Gill J, Yogavel M, Kumar A, Belrhali H, Jain SK, Rug M, et al. Crystal structure of malaria parasite nucleosome assembly protein: distinct modes of protein localization and histone recognition. J Biol Chem 2009; 284:10076 - 10087; PMID: 19176479; http://dx.doi.org/10.1074/jbc.M808633200
  • Heo K, Kim H, Choi SH, Choi J, Kim K, Gu J, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 2008; 30:86 - 97; PMID: 18406329; http://dx.doi.org/10.1016/j.molcel.2008.02.029
  • Van Lijsebettens M, Grasser KD. The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction of flowering. Plant Signal Behav 2010; 5:715 - 717; PMID: 20404555; http://dx.doi.org/10.4161/psb.5.6.11646
  • Birch JL, Tan BC, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, et al. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 2009; 28:854 - 865; PMID: 19214185; http://dx.doi.org/10.1038/emboj.2009.33
  • Nashun B, Yukawa M, Liu H, Akiyama T, Aoki F. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 2010; 137:3785 - 3794; PMID: 20943707; http://dx.doi.org/10.1242/dev.051805
  • Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, et al. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 2006; 26:1156 - 1164; PMID: 16428466; http://dx.doi.org/10.1128/MCB.26.3.1156-64.2006
  • Wan Y, Chiang JH, Lin CH, Arens CE, Saleem RA, Smith JJ, et al. Histone chaperone Chz1p regulates H2B ubiquitination and subtelomeric anti-silencing. Nucleic Acids Res 2010; 38:1431 - 1440; PMID: 20008511; http://dx.doi.org/10.1093/nar/gkp1099
  • Braunschweig U, Hogan GJ, Pagie L, van Steensel B. Histone H1 binding is inhibited by histone variant H3.3. EMBO J 2009; 28:3635 - 3645; PMID: 19834459; http://dx.doi.org/10.1038/emboj.2009.301
  • Cuddapah S, Schones DE, Cui K, Roh TY, Barski A, Wei G, et al. Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions. Mol Cell Biol 2011; 31:700 - 709; PMID: 21173166; http://dx.doi.org/10.1128/MCB.00740-10
  • Stros M. HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 2010; 1799:101 - 113; PMID: 20123072
  • Thakar A, Gupta P, Ishibashi T, Finn R, Silva-Moreno B, Uchiyama S, et al. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry 2009; 48:10852 - 10857; PMID: 19856965; http://dx.doi.org/10.1021/bi901129e
  • Postnikov Y, Bustin M. Regulation of chromatin structure and function by HMGN proteins. Biochim Biophys Acta 2010; 1799:62 - 68; PMID: 19948260
  • Lim JH, West KL, Rubinstein Y, Bergel M, Postnikov YV, Bustin M. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J 2005; 24:3038 - 3048; PMID: 16096646; http://dx.doi.org/10.1038/sj.emboj.7600768
  • Rochman M, Malicet C, Bustin M. HMGN5/NSBP1: a new member of the HMGN protein family that affects chromatin structure and function. Biochim Biophys Acta 2010; 1799:86 - 92; PMID: 20123071
  • Rochman M, Postnikov Y, Correll S, Malicet C, Wincovitch S, Karpova TS, et al. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription. Mol Cell 2009; 35:642 - 656; PMID: 19748358; http://dx.doi.org/10.1016/j.molcel.2009.07.002
  • Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, et al. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010; 3:7; PMID: 20334638; http://dx.doi.org/10.1186/1756-8935-3-7
  • Iizuka M, Smith MM. Functional consequences of histone modifications. Curr Opin Genet Dev 2003; 13:154 - 160; PMID: 12672492; http://dx.doi.org/10.1016/S0959-437X(03)00020-0
  • Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 2009; 12:659 - 665; PMID: 19736624
  • Denis GV. Duality in bromodomain-containing protein complexes. Front Biosci 2001; 6:849 - 852; PMID: 11487463; http://dx.doi.org/10.2741/Denis
  • Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol 2010; 102:122 - 128; PMID: 20493208; http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.001
  • Zhang B, Chambers KJ, Faller DV, Wang S. Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 2007; 26:7153 - 7157; PMID: 17486062; http://dx.doi.org/10.1038/sj.onc.1210509
  • Shen W, Xu C, Huang W, Zhang J, Carlson JE, Tu X, et al. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry 2007; 46:2100 - 2110; PMID: 17274598; http://dx.doi.org/10.1021/bi0611208
  • Umehara T, Nakamura Y, Wakamori M, Ozato K, Yokoyama S, Padmanabhan B. Structural implications for K5/K12-di-acetylated histone H4 recognition by the second bromodomain of BRD2. FEBS Lett 2010; 584:3901 - 3908; PMID: 20709061; http://dx.doi.org/10.1016/j.febslet.2010.08.013
  • Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 2006; 5:502 - 511; PMID: 16512664; http://dx.doi.org/10.1021/pr050430u
  • Nakamura Y, Umehara T, Nakano K, Jang MK, Shirouzu M, Morita S, et al. Crystal structure of the human BRD2 bromodomain: insights into dimerization and recognition of acetylated histone H4. J Biol Chem 2007; 282:4193 - 4201; PMID: 17148447; http://dx.doi.org/10.1074/jbc.M605971200
  • Chiang CM. Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 Biol Rep 2009; 1:98; PMID: 20495683
  • Dupaigne P, Lavelle C, Justome A, Lafosse S, Mirambeau G, Lipinski M, et al. Rad51 polymerization reveals a new chromatin remodeling mechanism. PLoS One 2008; 3:3643; PMID: 18982066; http://dx.doi.org/10.1371/journal.pone.0003643
  • Lee K, Kang MJ, Kwon SJ, Kwon YK, Kim KW, Lim JH, et al. Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells. Mol Biol Cell 2007; 18:4013 - 4023; PMID: 17652455; http://dx.doi.org/10.1091/mbc.E07-05-0437
  • Barresi V, Ragusa A, Fichera M, Musso N, Castiglia L, Rappazzo G, et al. Decreased expression of GRAF1/OPHN-1-L in the X-linked alpha thalassemia mental retardation syndrome. BMC Med Genomics 2010; 3:28; PMID: 20602808; http://dx.doi.org/10.1186/1755-8794-3-28
  • Chioda M, Vengadasalam S, Kremmer E, Eberharter A, Becker PB. Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development 2010; 137:3513 - 3522; PMID: 20843858; http://dx.doi.org/10.1242/dev.048405
  • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 2004; 18:170 - 183; PMID: 14752009; http://dx.doi.org/10.1101/gad.1139604
  • Eberharter A, Vetter I, Ferreira R, Becker PB. ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. EMBO J 2004; 23:4029 - 4039; PMID: 15457208; http://dx.doi.org/10.1038/sj.emboj.7600382
  • Eberharter A, Ferrari S, Längst G, Straub T, Imhof A, Varga-Weisz P, et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 2001; 20:3781 - 3788; PMID: 11447119; http://dx.doi.org/10.1093/emboj/20.14.3781
  • Guschin D, Geiman TM, Kikyo N, Tremethick DJ, Wolffe AP, Wade PA. Multiple ISWI ATPase complexes from Xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J Biol Chem 2000; 275:35248 - 35255; PMID: 10942776; http://dx.doi.org/10.1074/jbc.M006041200
  • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 1997; 388:598 - 602; PMID: 9252192; http://dx.doi.org/10.1038/41587
  • Längst G, Bonte EJ, Corona DF, Becker PB. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 1999; 97:843 - 852; PMID: 10399913; http://dx.doi.org/10.1016/S0092-8674(00)80797-7
  • Bonaldi T, Längst G, Strohner R, Becker PB, Bianchi ME. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J 2002; 21:6865 - 6873; PMID: 12486007; http://dx.doi.org/10.1093/emboj/cdf692
  • Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R, et al. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 2010; 40:976 - 987; PMID: 21172662; http://dx.doi.org/10.1016/j.molcel.2010.12.003
  • Musselman CA, Mansfield RE, Garske AL, Davrazou F, Kwan AH, Oliver SS, et al. Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem J 2009; 423:179 - 187; PMID: 19624289; http://dx.doi.org/10.1042/BJ20090870
  • Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, et al. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem 2011; 286:11779 - 11791; PMID: 21278251; http://dx.doi.org/10.1074/jbc.M110.208207
  • Kunert N, Wagner E, Murawska M, Klinker H, Kremmer E, Brehm A. dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. EMBO J 2009; 28:533 - 544; PMID: 19165147; http://dx.doi.org/10.1038/emboj.2009.3
  • Ramírez J, Hagman J. The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics 2009; 4:532 - 536; PMID: 19923891
  • Snow JW, Orkin SH. Translational isoforms of FOG1 regulate GATA1-interacting complexes. J Biol Chem 2009; 284:29310 - 29319; PMID: 19654328; http://dx.doi.org/10.1074/jbc.M109.043497
  • Zegerman P, Canas B, Pappin D, Kouzarides T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 2002; 277:11621 - 11624; PMID: 11850414; http://dx.doi.org/10.1074/jbc.C200045200
  • Lomberk G, Mathison AJ, Grzenda A, Urrutia R. The sunset of somatic genetics and the dawn of epigenetics: a new frontier in pancreatic cancer research. Curr Opin Gastroenterol 2008; 24:597 - 602; PMID: 19122501; http://dx.doi.org/10.1097/MOG.0b013e32830b111d
  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410:120 - 124; PMID: 11242054; http://dx.doi.org/10.1038/35065138
  • Lavigne M, Eskeland R, Azebi S, Saint-André V, Jang SM, Batsché E, et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 2009; 5:1000769; PMID: 20011120; http://dx.doi.org/10.1371/journal.pgen.1000769
  • Bierne H, Tham TN, Batsche E, Dumay A, Leguillou M, Kernéis-Golsteyn S, et al. Human BAHD1 promotes heterochromatic gene silencing. Proc Natl Acad Sci USA 2009; 106:13826 - 13831; PMID: 19666599; http://dx.doi.org/10.1073/pnas.0901259106
  • Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics 2009; 36:75 - 88; PMID: 19232306
  • Kwon SH, Workman JL. HP1c casts light on dark matter. Cell Cycle 2011; 10:625 - 630; PMID: 21301224; http://dx.doi.org/10.4161/cc.10.4.14796
  • Sedivy JM, Banumathy G, Adams PD. Aging by epigenetics—a consequence of chromatin damage?. Exp Cell Res 2008; 314:1909 - 1917; PMID: 18423606; http://dx.doi.org/10.1016/j.yexcr.2008.02.023
  • Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 2011; 21:147 - 163; PMID: 21177972; http://dx.doi.org/10.1101/gr.110098.110
  • Montanaro L, Govoni M, Orrico C, Treré D, Derenzini M. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes. Cell Struct Funct 2011; 36:49 - 56; PMID: 21317539; http://dx.doi.org/10.1247/csf.10017
  • Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007; 450:440 - 444; PMID: 18004385; http://dx.doi.org/10.1038/nature06268
  • Sugimura K, Fukushima Y, Ishida M, Ito S, Nakamura M, Mori Y, et al. Cell cycle-dependent accumulation of histone H3.3 and euchromatic histone modifications in pericentromeric heterochromatin in response to a decrease in DNA methylation levels. Exp Cell Res 2010; 316:2731 - 2746; PMID: 20599948; http://dx.doi.org/10.1016/j.yexcr.2010.06.016
  • Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, et al. Identification of differential protein interactors of lamin A and progerin. Nucleus 2010; 1:513 - 525; PMID: 21327095
  • Schneider M, Lu W, Neumann S, Brachner A, Gotzmann J, Noegel AA, et al. Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope. Cell Mol Life Sci 2011; 68:1593 - 1610; PMID: 20922455; http://dx.doi.org/10.1007/s00018-010-0535-z
  • Raška I. Importance of molecular cell biology investigations in human medicine in the story of the Hutchinson-Gilford progeria syndrome. Interdiscip Toxicol 2010; 3:89 - 93; PMID: 21217880; http://dx.doi.org/10.2478/v10102-010-0018-y
  • Schirmer EC. The epigenetics of nuclear envelope organization and disease. Mutat Res 2008; 647:112 - 121; PMID: 18722388; http://dx.doi.org/10.1016/j.mrfmmm.2008.07.012
  • Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010; 10:12 - 31; PMID: 19796712; http://dx.doi.org/10.1016/j.mito.2009.09.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.