1,037
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

Mutation of MeCP2 alters transcriptional regulation of select immediate-early genes

, &
Pages 146-154 | Received 28 Sep 2011, Accepted 30 Nov 2011, Published online: 01 Feb 2012

References

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462:315 - 322; PMID: 19829295; http://dx.doi.org/10.1038/nature08514
  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31:89 - 97; PMID: 16403636; http://dx.doi.org/10.1016/j.tibs.2005.12.008
  • Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron 2007; 56:422 - 437; PMID: 17988628; http://dx.doi.org/10.1016/j.neuron.2007.10.001
  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23:185 - 188; PMID: 10508514; http://dx.doi.org/10.1038/13810
  • Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001; 27:327 - 331; PMID: 11242118; http://dx.doi.org/10.1038/85906
  • McGraw CM, Samaco RC, Zoghbi HY. Adult neural function requires MeCP2. Science 2011; 333:186; PMID: 21636743; http://dx.doi.org/10.1126/science.1206593
  • Deng JV, Rodriguiz RM, Hutchinson AN, Kim IH, Wetsel WC, West AE. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci 2010; 13:1128 - 1136; PMID: 20711186; http://dx.doi.org/10.1038/nn.2614
  • Armstrong DD. Neuropathology of Rett syndrome. J Child Neurol 2005; 20:747 - 753; PMID: 16225830; http://dx.doi.org/10.1177/08830738050200082401
  • Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, et al. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol 2008; 99:112 - 121; PMID: 18032561; http://dx.doi.org/10.1152/jn.00826.2007
  • Nelson ED, Kavalali ET, Monteggia LM. MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr Biol 2006; 16:710 - 716; PMID: 16581518; http://dx.doi.org/10.1016/j.cub.2006.02.062
  • Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2005; 102:12560 - 12565; PMID: 16116096; http://dx.doi.org/10.1073/pnas.0506071102
  • Chao HT, Zoghbi HY, Rosenmund C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 2007; 56:58 - 65; PMID: 17920015; http://dx.doi.org/10.1016/j.neuron.2007.08.018
  • Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA 2009; 106:2029 - 2034; PMID: 19208815; http://dx.doi.org/10.1073/pnas.0812394106
  • Im HI, Hollander JA, Bali P, Kenny PJ. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010; 13:1120 - 1127; PMID: 20711185; http://dx.doi.org/10.1038/nn.2615
  • Shahbazian MD, Young JI, Yuva-Paylor LA, Spencer CM, Antalffy BA, Noebels JL, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 2002; 35:243 - 254; PMID: 12160743; http://dx.doi.org/10.1016/S0896-6273(02)00768-7
  • Stearns NA, Schaevitz LR, Bowling H, Nag N, Berger UV, Berger-Sweeney J. Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience 2007; 146:907 - 921; PMID: 17383101; http://dx.doi.org/10.1016/j.neuroscience.2007.02.009
  • De Filippis B, Ricceri L, Laviola G. Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome. Genes Brain Behav 2010; 9:213 - 223; PMID: 19958389; http://dx.doi.org/10.1111/j.1601-183X.2009.00551.x
  • Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8:844 - 858; PMID: 17948030; http://dx.doi.org/10.1038/nrn2234
  • Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 2010; 327:213 - 216; PMID: 20056891; http://dx.doi.org/10.1126/science.1179438
  • Norrholm SD, Bibb JA, Nestler EJ, Ouimet CC, Taylor JR, Greengard P. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 2003; 116:19 - 22; PMID: 12535933; http://dx.doi.org/10.1016/S0306-4522(02)00560-2
  • Parkitna JR, Bilbao A, Rieker C, Engblom D, Piechota M, Nordheim A, et al. Loss of the serum response factor in the dopamine system leads to hyperactivity. FASEB J 2010; 24:2427 - 2435; PMID: 20223941; http://dx.doi.org/10.1096/fj.09-151423
  • Leslie JH, Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223 - 237; PMID: 21601615; http://dx.doi.org/10.1016/j.pneurobio.2011.05.002
  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 2003; 278:4035 - 4040; PMID: 12427740; http://dx.doi.org/10.1074/jbc.M210256200
  • Nan X, Hou J, Maclean A, Nasir J, Lafuente MJ, Shu X, et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Natl Acad Sci USA 2007; 104:2709 - 2714; PMID: 17296936; http://dx.doi.org/10.1073/pnas.0608056104
  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386 - 389; PMID: 9620804; http://dx.doi.org/10.1038/30764
  • Kuczenski R, Segal DS, Aizenstein ML. Amphetamine, cocaine and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci 1991; 11:2703 - 2712; PMID: 1715389
  • Hope B, Kosofsky B, Hyman SE, Nestler EJ. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci USA 1992; 89:5764 - 5768; PMID: 1631058; http://dx.doi.org/10.1073/pnas.89.13.5764
  • Graybiel AM, Moratalla R, Robertson HA. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 1990; 87:6912 - 6916; PMID: 2118661; http://dx.doi.org/10.1073/pnas.87.17.6912
  • Fumagalli F, Bedogni F, Frasca A, Di Pasquale L, Racagni G, Riva MA. Corticostriatal upregulation of activity-regulated cytoskeletal-associated protein expression after repeated exposure to cocaine. Mol Pharmacol 2006; 70:1726 - 1734; PMID: 16908598; http://dx.doi.org/10.1124/mol.106.026302
  • Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259 - 295; PMID: 21620929; http://dx.doi.org/10.1016/j.pneurobio.2011.05.003
  • Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 2009; 138:129 - 145; PMID: 19596240; http://dx.doi.org/10.1016/j.cell.2009.05.047
  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473:43 - 49; PMID: 21441907; http://dx.doi.org/10.1038/nature09906
  • Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010; 37:457 - 468; PMID: 20188665; http://dx.doi.org/10.1016/j.molcel.2010.01.030
  • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell 2009; 36:541 - 546; PMID: 19941815; http://dx.doi.org/10.1016/j.mol-cel.2009.10.019
  • Saha RN, Wissink EM, Bailey ER, Zhao M, Fargo DC, Hwang JY, et al. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat Neurosci 2011; 14:848 - 856; PMID: 21623364; http://dx.doi.org/10.1038/nn.2839
  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010; 465:182 - 187; PMID: 20393465; http://dx.doi.org/10.1038/nature09033
  • Sims RJ 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437 - 2468; PMID: 15489290; http://dx.doi.org/10.1101/gad.1235904
  • Guy J, Cheval H, Selfridge J, Bird A. The Role of MeCP2 in the Brain. Ann Rev Cell Dev Biol 2011;
  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454:766 - 770; PMID: 18600261
  • Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 2011; 72:72 - 85; PMID: 21982370; http://dx.doi.org/10.1016/j.neuron.2011.08.022
  • Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 2007; 104:19416 - 19421; PMID: 18042715; http://dx.doi.org/10.1073/pnas.0707442104
  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003; 302:885 - 889; PMID: 14593183; http://dx.doi.org/10.1126/science.1086446
  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008; 320:1224 - 1229; PMID: 18511691; http://dx.doi.org/10.1126/science.1153252
  • Chandler SP, Guschin D, Landsberger N, Wolffe AP. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 1999; 38:7008 - 7018; PMID: 10353812; http://dx.doi.org/10.1021/bi990224y
  • Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 2005; 37:31 - 40; PMID: 15608638
  • Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP, et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2010; 107:18161 - 18166; PMID: 20921386; http://dx.doi.org/10.1073/pnas.1005595107
  • Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR. A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Mol Cell 2003; 12:425 - 435; PMID: 14536082; http://dx.doi.org/10.1016/S1097-2765(03)00276-4
  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19:187 - 191; PMID: 9620779; http://dx.doi.org/10.1038/561
  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 2010; 468:443 - 446; PMID: 21085180; http://dx.doi.org/10.1038/nature09544
  • Urdinguio RG, Pino I, Ropero S, Fraga MF, Esteller M. Histone H3 and H4 modification profiles in a Rett syndrome mouse model. Epigenetics 2007; 2:11 - 14; PMID: 17965622; http://dx.doi.org/10.4161/epi.2.1.3698
  • Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010; 33:267 - 276; PMID: 20207024; http://dx.doi.org/10.1016/j.tins.2010.02.002
  • McCurry CL, Shepherd JD, Tropea D, Wang KH, Bear MF, Sur M. Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation. Nat Neurosci 2010; 13:450 - 457; PMID: 20228806; http://dx.doi.org/10.1038/nn.2508
  • Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 2006; 52:475 - 484; PMID: 17088213; http://dx.doi.org/10.1016/j.neuron.2006.08.034
  • Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, Finkbeiner S. Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci USA 2010; 107:18173 - 18178; PMID: 20921410; http://dx.doi.org/10.1073/pnas.1006546107
  • Gillespie RF, Gudas LJ. Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2) and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol 2007; 372:298 - 316; PMID: 17663992; http://dx.doi.org/10.1016/j.jmb.2007.06.079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.