1,310
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

Epigenetic and genetic variation at the IGF2/H19 imprinting control region on 11p15.5 is associated with cerebellum weight

, , , &
Pages 155-163 | Received 20 Oct 2011, Accepted 30 Nov 2011, Published online: 01 Feb 2012

References

  • Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 2010; 11:533 - 538; PMID: 20567245; http://dx.doi.org/10.1038/nrg2815
  • Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet 2005; 21:457 - 465; PMID: 15990197; http://dx.doi.org/10.1016/j.tig.2005.06.008
  • Reik W, Davies K, Dean W, Kelsey G, Constância M. Imprinted genes and the coordination of fetal and postnatal growth in mammals. Novartis Found Symp 2001; 237:19 - 31; PMID: 11444044; http://dx.doi.org/10.1002/0470846666.ch3
  • Davies W, Isles AR, Wilkinson LS. Imprinted gene expression in the brain. Neurosci Biobehav Rev 2005; 29:421 - 430; PMID: 15820547; http://dx.doi.org/10.1016/j.neubiorev.2004.11.007
  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010; 329:643 - 648; PMID: 20616232; http://dx.doi.org/10.1126/science.1190830
  • Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA. Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 1996; 92:91 - 100; PMID: 8861727; http://dx.doi.org/10.1016/0165-3806(95)00209-X
  • Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neurosci 2007; 8:832 - 843; PMID: 17925812; http://dx.doi.org/10.1038/nrn2235
  • Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 2011; 469:534 - 538; PMID: 21270893; http://dx.doi.org/10.1038/nature09651
  • Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 2011; 469:491 - 497; PMID: 21270887; http://dx.doi.org/10.1038/nature09667
  • Badcock C, Crespi B. Battle of the sexes may set the brain. Nature 2008; 454:1054 - 1055; PMID: 18756240; http://dx.doi.org/10.1038/4541054a
  • Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell 2009; 137:1194 - 1211; PMID: 19563753; http://dx.doi.org/10.1016/j.cell.2009.06.001
  • Murrell A, Heeson S, Bowden L, Constância M, Dean W, Kelsey G, et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep 2001; 2:1101 - 1106; PMID: 11743023; http://dx.doi.org/10.1093/embo-reports/kve248
  • Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002; 417:945 - 948; PMID: 12087403; http://dx.doi.org/10.1038/nature00819
  • Lui JC, Finkielstain GP, Barnes KM, Baron J. An imprinted gene network that controls mammalian somatic growth is downregulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol 2008; 295:189 - 196; PMID: 18448610; http://dx.doi.org/10.1152/ajp-regu.00182.2008
  • Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 2007; 16:547 - 554; PMID: 17339271; http://dx.doi.org/10.1093/hmg/ddm010
  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105:17046 - 17049; PMID: 18955703; http://dx.doi.org/10.1073/pnas.0806560105
  • Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 2009; 4:7845; PMID: 19924280; http://dx.doi.org/10.1371/journal.pone.0007845
  • Tobi EW, Heijmans BT, Kremer D, Putter H, Delemarre-van de Waal HA, Finken MJ, et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 2011; 6:171 - 176; PMID: 20930547; http://dx.doi.org/10.4161/epi.6.2.13516
  • Hulshoff Pol HE, Hoek HW, Susser E, Brown AS, Dingemans A, Schnack HG, et al. Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 2000; 157:1170 - 1172; PMID: 10873931; http://dx.doi.org/10.1176/appi.ajp.157.7.1170
  • St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 2005; 294:557 - 562; PMID: 16077049; http://dx.doi.org/10.1001/jama.294.5.557
  • Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D, et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 1996; 53:25 - 31; PMID: 8540774; http://dx.doi.org/10.1001/archpsyc.1996.01830010027005
  • Susser E, St Clair D, He L. Latent effects of prenatal malnutrition on adult health: the example of schizophrenia. Ann NY Acad Sci 2008; 1136:185 - 192; PMID: 18579882; http://dx.doi.org/10.1196/annals.1425.024
  • Harrison PJ, Freemantle N, Geddes JR. Meta-analysis of brain weight in schizophrenia. Schizophr Res 2003; 64:25 - 34; PMID: 14511798; http://dx.doi.org/10.1016/S0920-9964(02)00502-9
  • Abel KM. Foetal origins of schizophrenia: testable hypotheses of genetic and environmental influences. Br J Psychiatry 2004; 184:383 - 385; PMID: 15123500; http://dx.doi.org/10.1192/bjp.184.5.383
  • Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916 - 943; PMID: 16131630; http://dx.doi.org/10.1210/er.2004-0024
  • Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011; 69:893 - 905; PMID: 21382550; http://dx.doi.org/10.1016/j.neuron.2011.01.023
  • Hetts SW, Rosen KM, Dikkes P, Villa-Komaroff L, Mozell RL. Expression and imprinting of the insulin-like growth factor II gene in neonatal mouse cerebellum. J Neurosci Res 1997; 50:958 - 966; PMID: 9452010; http://dx.doi.org/10.1002/(SICI)1097-4547(19971215)50:6<958::AID-JNR6>3.0.CO;2-C
  • Fernandez C, Tatard VM, Bertrand N, Dahmane N. Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci 2010; 32:59 - 70; PMID: 20389077; http://dx.doi.org/10.1159/000274458
  • Pidsley R, Dempster EL, Mill J. Brain weight in males is correlated with DNA methylation at IGF2. Mol Psychiatry 2010; 15:880 - 881; PMID: 20010889; http://dx.doi.org/10.1038/mp.2009.138
  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009; 324:929 - 930; PMID: 19372393; http://dx.doi.org/10.1126/science.1169786
  • Souren NY, Paulussen AD, Steyls A, Loos RJ, Brandao RD, Gielen M, et al. Parent-of-origin specific linkage and association of the IGF2 gene region with birth weight and adult metabolic risk factors. Int J Obes (Lond) 2009; 33:962 - 970; PMID: 19546867; http://dx.doi.org/10.1038/ijo.2009.126
  • Gaunt TR, Cooper JA, Miller GJ, Day IN, O'Dell SD. Positive associations between single nucleotide polymorphisms in the IGF2 gene region and body mass index in adult males. Hum Mol Genet 2001; 10:1491 - 1501; PMID: 11448941; http://dx.doi.org/10.1093/hmg/10.14.1491
  • Kaku K, Osada H, Seki K, Sekiya S. Insulin-like growth factor 2 (IGF2) and IGF2 receptor gene variants are associated with fetal growth. Acta Paediatr 2007; 96:363 - 367; PMID: 17407457; http://dx.doi.org/10.1111/j.1651-2227.2006.00120.x
  • Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, et al. Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 2010; 86:411 - 419; PMID: 20215007; http://dx.doi.org/10.1016/j.ajhg.2010.02.005
  • Meaburn EL, Schalkwyk LC, Mill J. Allele-specific methylation in the human genome: implications for genetic studies of complex disease. Epigenetics 2010; 5:578 - 582; PMID: 20716955; http://dx.doi.org/10.4161/epi.5.7.12960
  • Adkins RM, Somes G, Morrison JC, Hill JB, Watson EM, Magann EF, et al. Association of birth weight with polymorphisms in the IGF2, H19 and IGF2R genes. Pediatr Res 2010; 68:429 - 434; PMID: 20639793
  • Nagaya K, Makita Y, Taketazu G, Okamoto T, Nakamura E, Hayashi T, et al. Paternal allele of IGF2 gene haplotype CTG is associated with fetal and placental growth in Japanese. Pediatr Res 2009; 66:135 - 139; PMID: 19390492; http://dx.doi.org/10.1203/PDR.0b013e3181a9e818
  • Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, et al. DIAGRAM Consortium. Parental origin of sequence variants associated with complex diseases. Nature 2009; 462:868 - 874; PMID: 20016592; http://dx.doi.org/10.1038/nature08625
  • Wolf JB, Cheverud JM, Roseman C, Hager R. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet 2008; 4:1000091; PMID: 18535661; http://dx.doi.org/10.1371/journal.pgen.1000091
  • Woodfine K, Huddleston JE, Murrell A. Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue. Epigenetics Chromatin 2011; 4:1; PMID: 21281512; http://dx.doi.org/10.1186/1756-8935-4-1
  • Ulaner GA, Yang Y, Hu JF, Li T, Vu TH, Hoffman AR. CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues. Endocrinology 2003; 144:4420 - 4426; PMID: 12960026; http://dx.doi.org/10.1210/en.2003-0681
  • Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 2006; 312:269 - 272; PMID: 16614224
  • Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 2006; 38:1341 - 1347; PMID: 17033624; http://dx.doi.org/10.1038/ng1891
  • Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B, et al. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 2010; 19:4176 - 4188; PMID: 20699328; http://dx.doi.org/10.1093/hmg/ddq336
  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478:483 - 489; PMID: 22031440; http://dx.doi.org/10.1038/nature10523
  • Clouchoux C, Guizard N, Evans AC, du Plessis AJ, Limperopoulos C. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 2011; PMID: 22055336; http://dx.doi.org/10.1016/j.ajog.2011.10.002
  • Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 2010; 49:63 - 70; PMID: 19683586; http://dx.doi.org/10.1016/j.neuroimage.2009.08.016
  • Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24:1085 - 1104; PMID: 19745085; http://dx.doi.org/10.1177/0883073809338067
  • Chowen JA, Goya L, Ramos S, Busiguina S, García-Segura LM, Argente J, et al. Effects of early undernutrition on the brain insulin-like growth factor-I system. J Neuroendocrinol 2002; 14:163 - 169; PMID: 11849376; http://dx.doi.org/10.1046/j.0007-1331.2001.00758.x
  • Gowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum 2007; 6:268 - 279; PMID: 17786823; http://dx.doi.org/10.1080/14734220601184821
  • Whiting BA, Barton RA. The evolution of the corticocerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol 2003; 44:3 - 10; PMID: 12604300; http://dx.doi.org/10.1016/S0047-2484(02)00162-8
  • Weaver AH. Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci USA 2005; 102:3576 - 3580; PMID: 15731345; http://dx.doi.org/10.1073/pnas.0500692102
  • Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry 2008; 64:81 - 88; PMID: 18395701; http://dx.doi.org/10.1016/j.biopsych.2008.01.003
  • Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 2003; 160:128 - 133; PMID: 12505811; http://dx.doi.org/10.1176/appi.ajp.160.1.128
  • Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry 1992; 49:983 - 988; PMID: 1449385; http://dx.doi.org/10.1001/archpsyc.1992.01820120071010
  • Nagano T, Sato M, Mori Y, Du Y, Takagi H, Tohyama M. Regional distribution of messenger RNA encoding the insulin-like growth factor type 2 receptor in the rat lower brainstem. Brain Res Mol Brain Res 1995; 32:14 - 24; PMID: 7494452; http://dx.doi.org/10.1016/0169-328X(95)00055-W
  • Roghani M, Lassarre C, Zapf J, Povoa G, Binoux M. Two insulin-like growth factor (IGF)-binding proteins are responsible for the selective affinity for IGF-II of cerebrospinal fluid binding proteins. J Clin Endocrinol Metab 1991; 73:658 - 666; PMID: 1714916; http://dx.doi.org/10.1210/jcem-73-3-658
  • Bienvenu G, Seurin D, Grellier P, Froment P, Baudrimont M, Monget P, et al. Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development and reproduction abnormalities. Endocrinology 2004; 145:2412 - 2420; PMID: 14749353; http://dx.doi.org/10.1210/en.2003-1196
  • Nestor C, Ruzov A, Meehan R, Dunican D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 2010; 48:317 - 319; PMID: 20569209; http://dx.doi.org/10.2144/000113403
  • Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 2011; 25:679 - 684; PMID: 21460036; http://dx.doi.org/10.1101/gad.2036011
  • Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 2007; 35:119; PMID: 17855397; http://dx.doi.org/10.1093/nar/gkm662
  • Skullerud K. Variations in the size of the human brain. Influence of age, sex, body length, body mass index, alcoholism, Alzheimer changes and cerebral atherosclerosis. Acta Neurol Scand Suppl 1985; 102:1 - 94; PMID: 3887832
  • Kaku K, Osada H, Seki K, Sekiya S. Insulin-like growth factor 2 (IGF2) and IGF2 receptor gene variants are associated with fetal growth. Acta Paediatr 2007; 96:363 - 367; PMID: 17407457; http://dx.doi.org/10.1111/j.1651-2227.2006.00120.x
  • Gaunt TR, Cooper JA, Miller GJ, Day IN, O'Dell SD. Positive associations between single nucleotide polymorphisms in the IGF2 gene region and body mass index in adult males. Hum Mol Genet 2001; 10:1491 - 1501; PMID: 11448941; http://dx.doi.org/10.1093/hmg/10.14.1491
  • Tost J, Jammes H, Dupont JM, Buffat C, Robert B, Mignot TM, et al. Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region. Nucleic Acids Res 2007; 35:701; PMID: 17178748
  • Harrison PJ, Laatikainen LM, Tunbridge EM, Eastwood SL. Human brain weight is correlated with expression of the ‘housekeeping genes’ beta-2-microglobulin (β2M) and TATA-binding protein (TBP). Neuropathol Appl Neurobiol 2010; 36:498 - 504; PMID: 20831744; http://dx.doi.org/10.1111/j.1365-2990.2010.01098.x
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402 - 408; PMID: 11846609; http://dx.doi.org/10.1006/meth.2001.1262

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.