881
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16INK4a gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet

, , , &
Pages 183-190 | Received 07 Sep 2011, Accepted 07 Dec 2011, Published online: 01 Feb 2012

References

  • Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005; 6:715 - 725; PMID: 16231422; http://dx.doi.org/10.1038/nrm1714
  • Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 1997; 94:9372 - 9377; PMID: 9256489; http://dx.doi.org/10.1073/pnas.94.17.9372
  • Zheng S, Pan YX. Histone modifications, not DNA methylation, cause transcriptional repression of p16 (CDKN2A) in the mammary glands of offspring of protein-restricted rats. J Nutr Biochem 2010; 22:567 - 573; PMID: 20934317
  • Hilakivi-Clarke L. Nutritional modulation of terminal end buds: its relevance to breast cancer prevention. Curr Cancer Drug Targets 2007; 7:465 - 474; PMID: 17691906; http://dx.doi.org/10.2174/156800907781386641
  • Walker BE. Tumors in female offspring of control and diethylstilbestrol-exposed mice fed high-fat diets. J Natl Cancer Inst 1990; 82:50 - 54; PMID: 2293656; http://dx.doi.org/10.1093/jnci/82.1.50
  • Stark AH, Kossoy G, Zusman I, Yarden G, Madar Z. Olive oil consumption during pregnancy and lactation in rats influences mammary cancer development in female offspring. Nutr Cancer 2003; 46:59 - 65; PMID: 12925305; http://dx.doi.org/10.1207/S15327914NC4601_08
  • Fernandez-Twinn DS, Ekizoglou S, Gusterson BA, Luan J, Ozanne SE. Compensatory mammary growth following protein restriction during pregnancy and lactation increases early-onset mammary tumor incidence in rats. Carcinogenesis 2007; 28:545 - 552; PMID: 16952910; http://dx.doi.org/10.1093/carcin/bgl166
  • Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 2009; 150:4999 - 5009; PMID: 19819967; http://dx.doi.org/10.1210/en.2009-0500
  • Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 2009; 89:1488 - 1493; PMID: 19261726; http://dx.doi.org/10.3945/ajcn.2009.27113B
  • Fernandez-Twinn DS, Ozanne SE. Early life nutrition and metabolic programming. Ann NY Acad Sci 2010; 1212:78 - 96; PMID: 21070247; http://dx.doi.org/10.1111/j.1749-6632.2010.05798.x
  • Gluckman PD, Hanson MA. Living with the past: evolution, development and patterns of disease. Science 2004; 305:1733 - 1736; PMID: 15375258; http://dx.doi.org/10.1126/science.1095292
  • Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction 2004; 127:643 - 651; PMID: 15175501; http://dx.doi.org/10.1530/rep.1.00221
  • Morley R. Fetal origins of adult disease. Semin Fetal Neonatal Med 2006; 11:73 - 78; PMID: 16368278; http://dx.doi.org/10.1016/j.siny.2005.11.001
  • Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002; 132:2393 - 2400; PMID: 12163699
  • Zheng S, Rollet M, Pan YX. Maternal protein restriction during pregnancy induces CCAAT/enhancer-binding protein (C/EBPβ) expression through the regulation of histone modification at its promoter region in female offspring rat skeletal muscle. Epigenetics 2011; 6:161 - 170; PMID: 20930553; http://dx.doi.org/10.4161/epi.6.2.13472
  • Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 1998; 395:237 - 243; PMID: 9751050; http://dx.doi.org/10.1038/26155
  • Rocco JW, Sidransky D. p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 2001; 264:42 - 55; PMID: 11237522; http://dx.doi.org/10.1006/excr.2000.5149
  • Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. Prog Nucleic Acid Res Mol Biol 1997; 56:327 - 346; PMID: 9187058; http://dx.doi.org/10.1016/S0079-6603(08)61009-0
  • Roeder RG, Rutter WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 1969; 224:234 - 237; PMID: 5344598; http://dx.doi.org/10.1038/224234a0
  • Feng Y, Wang X, Xu L, Pan H, Zhu S, Liang Q, et al. The transcription factor ZBP-89 suppresses p16 expression through a histone modification mechanism to affect cell senescence. FEBS J 2009; 276:4197 - 4206; PMID: 19583777; http://dx.doi.org/10.1111/j.1742-4658.2009.07128.x
  • Zhou R, Han L, Li G, Tong T. Senescence delay and repression of p16INK4a by Lsh via recruitment of histone deacetylases in human diploid fibroblasts. Nucleic Acids Res 2009; 37:5183 - 5196; PMID: 19561196; http://dx.doi.org/10.1093/nar/gkp533
  • de Assis S, Warri A, Cruz MI, Hilakivi-Clarke L. Changes in mammary gland morphology and breast cancer risk in rats. J Vis Exp 2010; 16:2260; PMID: 20972418
  • Olivo-Marston SE, Zhu Y, Lee RY, Cabanes A, Khan G, Zwart A, et al. Gene signaling pathways mediating the opposite effects of prepubertal low-fat and high-fat n-3 polyunsaturated fatty acid diets on mammary cancer risk. Cancer Prev Res 2008; 1:532 - 545; PMID: 19139003; http://dx.doi.org/10.1158/1940-6207.CAPR-08-0030
  • Auerkari EI. Methylation of tumor suppressor genes p16(INK4a), p27(Kip1) and E-cadherin in carcinogenesis. Oral Oncol 2006; 42:5 - 13; PMID: 15978859; http://dx.doi.org/10.1016/j.oraloncology.2005.03.016
  • de Assis S, Khan G, Hilakivi-Clarke L. High birth weight increases mammary tumorigenesis in rats. Int J Cancer 2006; 119:1537 - 1546; PMID: 16646052; http://dx.doi.org/10.1002/ijc.21936
  • Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 2004; 295:525 - 538; PMID: 15093749; http://dx.doi.org/10.1016/j.yexcr.2004.01.017
  • Wu LP, Wang X, Li L, Zhao Y, Lu S, Yu Y, et al. Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol 2008; 28:3219 - 3235; PMID: 18332107; http://dx.doi.org/10.1128/MCB.01516-07
  • Feng J, Fang H, Wang X, Jia Y, Zhang L, Jiao J, et al. Discovery of N-hydroxy-4-(3-phenylpropanamido) benzamide derivative 5j, a novel histone deacetylase inhibitor, as a potential therapeutic agent for human breast cancer. Cancer Biol Ther 2011; 11:477 - 489; PMID: 21263218; http://dx.doi.org/10.4161/cbt.11.5.14529
  • Huang W, Tan D, Wang X, Han S, Tan J, Zhao Y, et al. Histone deacetylase 3 represses p15(INK4b) and p21(WAF1/cip1) transcription by interacting with Sp1. Biochem Biophys Res Commun 2006; 339:165 - 171; PMID: 16298343; http://dx.doi.org/10.1016/j.bbrc.2005.11.010
  • Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010; 18:436 - 447; PMID: 21075309; http://dx.doi.org/10.1016/j.ccr.2010.10.022
  • Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 2008; 30:61 - 72; PMID: 18406327; http://dx.doi.org/10.1016/j.molcel.2008.02.030
  • Mukhopadhyay S, Ballard BR, Mukherjee S, Kabir SM, Das SK. Beneficial effects of soy protein in the initiation and progression against dimethylbenz [a] anthracene-induced breast tumors in female rats. Mol Cell Biochem 2006; 290:169 - 176; PMID: 16941229; http://dx.doi.org/10.1007/s11010-006-9184-9
  • Mohn F, Weber M, Schübeler D, Roloff TC. Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 2009; 507:55 - 64; PMID: 18987806; http://dx.doi.org/10.1007/978-1-59745-522-0_5
  • Voorhoeve PM, Agami R. Unraveling human tumor suppressor pathways: a tale of the INK4A locus. Cell Cycle 2004; 3:616 - 620; PMID: 15044859; http://dx.doi.org/10.4161/cc.3.5.859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.